
Altruism in Networks

Renaud Bourlès, Yann Bramoullé and Eduardo Perez-Richet*

April 2016

Abstract: We provide the first analysis of altruism in networks. Agents are embedded in

a fixed network and care about the well-being of their network neighbors. Depending on

incomes, they may provide financial support to their poorer friends. We study the Nash

equilibria of the resulting game of transfers. We show that equilibria maximize a concave

potential function. We establish existence, uniqueness of equilibrium consumption and

generic uniqueness of equilibrium transfers. We characterize the geometry of the network

of transfers and highlight the key role played by transfer intermediaries. We then study

comparative statics. A positive income shock to an individual benefits all. For small changes

in incomes, agents in a component of the network of transfers act as if they were organized

in an income-pooling community. A decrease in income inequality or expansion of the

altruistic network may increase consumption inequality.
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I Introduction

Private transfers play a significant role in our economies.1 They act as major sources of

redistribution and informal insurance, and interact in complex ways with public policies

(Cox, Hansen & Jimenez 2004). They also seem to be motivated, to a large extent, by

altruism.2 Individuals give to others they care about and, in particular, to their family

and friends in need. Moreover, as increasingly recognized by economists, individuals are

embedded in different social and familial neighborhoods (Jackson 2008). The collection of

altruistic links form a network and private transfers flow through altruistic networks.

In this paper, we provide the first analysis of altruism in networks. Agents are embedded

in a fixed network and care about the well-being of their network neighbors. Depending on

incomes, agents may provide financial support to their poorer friends. Incentives to give

are intricately linked to the network structure. Transfers made in one part of the network

may depend on transfers made in other parts. We study the Nash equilibria of this game

of transfers.

Our analysis introduces networks into the economics of altruism. Building on Barro

(1974) and Becker (1975), economists have placed altruism at the heart of their study of

family behavior.3 They have generally failed to recognize, however, that family ties form

complex networks. Existing models are either static models with a few fully connected

agents (e.g. Alger & Weibull (2010), Bernheim & Stark (1988), Bruce & Waldman (1991))

or dynamic models with disconnected dynastic families (e.g. Altig & Davis (1992), Hori

& Kanaya (1989), Laitner (1988)). In one exception, Bernheim & Bagwell (1998, p.309)

point out the unrealistic nature of these assumptions: “For the human species, propagation

requires the participation of two traditionally unrelated individuals. Thus family linkages

form complex networks in which each individual may belong to many dynastic groupings.”4

1This holds both in developing and in developed economies. For instance, remittances received in 2009

in the Philippines represent 12% of GDP (Worldbank 2011) while interhousehold transfers in the US in

2003 are estimated at 1.2% of GDP (Lee, Donehower & Miller 2011).
2See, e.g., Foster & Rosenzweig (2001), Leider et al. (2009), Ligon & Schechter (2012), de Weerdt &

Fafchamps (2011).
3In evolutionary biology, Hamilton’s rule shows that altruism is induced by kin ties and shared genes,

e.g. Alger & Weibull (2010).
4The network patterns formed by families play a central role in human genetics and genealogy (Lewis

1



We provide the first theoretical exploration of this important fact.5 To understand how

altruism operates on networks, we adopt a well-studied benchmark model. We assume

that an agent’s utility is a linear combination of her and others’ utilities.6 We find that

the network has a first-order impact on transfers and consumption. Altruistic interactions

establish connections between distant agents and income shocks may propagate throughout

the altruistic network.

In the first stage of our analysis, we show that Nash equilibria maximize a concave

potential function. Building on this reformulation, we establish existence, uniqueness of

equilibrium consumption and generic uniqueness of equilibrium transfers. We then charac-

terize the geometry of the network of transfers. The generically unique Nash equilibrium

has a forest structure and money flows through the strongest paths of the altruistic net-

work. Intermediaries, who transmit to poorer friends money received from richer friends,

appear when there are holes in the network.

In the second stage, we study comparative statics with respect to incomes and to the

altruistic network. We show that equilibrium consumption varies monotonically with in-

comes, so that a positive income shock to an individual benefits all. For small changes in

incomes, agents in a component of the network of transfers act as if they were organized

in an income-pooling community. Small redistributions transferring resources across com-

ponents are not neutral, and individuals benefit when their component’s income increases.

A decrease in income inequality may increase consumption inequality. Expansion of the

altruistic network may also aggravate inequality, and we identify who gains and who loses

from an increase in the strength of an altruistic link.

Our analysis contributes to several literatures. We clarify, first, the implications of

different assumptions on altruistic behavior. Under the assumption that agents care about

others’ social utilities only, which we call deferential caring following Pollak (2003), inter-

2010) and are now being investigated by social psychologists (Widmer 2006).
5By contrast, Bernheim & Bagwell (1988) do not study the nature and general properties of Nash

equilibria. Instead, they provide conditions under which public policies are neutral in a dynamic framework

where agents care about others’ consumption. We discuss the literature on neutrality below.
6In reality, agents may be paternalistic (Pollak 1988), may derive a warm glow from giving (Andreoni

1989), or may care about how others reached their current situation (Alesina & Angeletos 2005). In future

research, it would be interesting to study how these different kinds of altruism operate on networks. Our

analysis can thus be viewed as the first step in a broader research program.
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mediaries can always be bypassed in equilibrium. This contrast with empirical evidence

indicating that many agents both give and receive.7 More generally, our analysis may help

inform the empirical debate on the motives behind private transfers (Cox 1987).

Our analysis contributes to the literature on the neutrality of public policies. Barro

(1974) and Becker (1974) showed early on that income redistributions may have no im-

pact under altruism. Bernheim & Bagwell (1988) showed that any small redistribution is

neutral when the equilibrium transfer network is connected.8 We extend their result, in

our context, to arbitrary networks. We show, in particular, that removing resources from

rich benefactors of poor communities may worsen outcomes for community members and

increase inequality.

Our analysis also introduces altruism into the economics of networks, contributing to

two strands of this fast-growing literature. The paper first advances the analysis of games

played on fixed networks. We provide one of the first studies of a network game with

multidimensional strategies, whereas existing work mainly focuses on scalar strategies. For

instance, Allouch (2015) studies the private provision of a public good on a network.9 A

Nash equilibrium is a vector of efforts in his context, but a network of transfers in ours. This

increase in dimensionality is linked to deep differences in assumptions and outcomes.10 Still,

we show that the usefulness of potential techniques, emphasized by Bramoullé, Kranton &

D’amours (2014), extends to a setup with multidimensional strategies.

Finally, the paper contributes to the literature on private transfers and informal risk-

sharing in social networks. A large empirical literature documents the key role played by

family, friends and neighbors in helping individuals and households cope with negative

7For instance in a nationally representative survey in the Philippines, 43% of net recipients are also

givers, see Table 1 in Cox, Hansen & Jimenez (2004)
8These findings are related to neutrality results in models of private provision of multiple public goods,

see Bergstrom, Blume & Varian (1986), Bernheim (1986), Cornes & Itaya (2010). A key difference, however,

is that altruistic agents are not passive recipients and may transfer money themselves.
9Related analyses include Acemoglu, Garcia-Rimeno & Robinson (2015), Bramoullé & Kranton (2007a)

and Bramoullé, Kranton & D’amours (2014).
10For instance, actions are substitutes in Allouch (2015) and, to be neutral, a small redistribution

must leave the aggregate income of every neighborhood unchanged. By contrast, the transfer game here

involves a mixture of substitutes and complements and neutrality holds when the aggregate incomes of all

components of the transfer network are unchanged.
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shocks.11 Conversely, households socially connected to other households receiving cash

transfers may indirectly benefit, see Angelucci & De Giorgi (2009) and Angelucci, De Giorgi

& Rasul (2012). These empirical findings have motivated researchers to develop models of

transfers in networks. In particular, Ambrus, Mobius & Szeidl (2014) studies risk-sharing

when agents are embedded in a fixed, weighted network.12 They assume that links serve

as social collaterals and characterize the Pareto-constrained risk-sharing arrangements. In

our context, the network describes instead the structure of social preferences. Transfers are

obtained as Nash equilibria of a non-cooperative game and generate redistribution even in

the absence of risk. Our monotonicity result is consistent with the empirical evidence that

shocks may spill over social connections.

II Setup

We consider a model of private transfers between  ≥ 2 agents. Agent  has income 0 ≥ 0
and may give  ≥ 0 to agent . The collection of bilateral transfers defines a network
T ∈ R2

+ . By convention,  = 0. Income after transfers, or consumption,  is equal to

 = 0 −
X


 +
X


 (1)

Thus, private transfers redistribute income across agents and aggregate income is conservedP
  =

P
 
0
 .

We assume that agents care about each other. They have social preferences (y) on

the whole distribution y, with a private component (). We assume that  is twice

differentiable and satisfies 0  0, 
00
  0 and lim→∞ 0() = 0. In line with the economic

literature on the family, we assume that agents could a priori care about others’ private

11See, e.g., Fafchamps & Gubert (2007), Fafchamps & Lund (2003), de Weerdt & Dercon (2006), de

Weerdt & Fafchamps (2011).
12Bloch, Genicot & Ray (2008) and Bramoullé & Kranton (2007b) study network stability in risk-sharing

contexts.
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or social utilities. Formally,

(y) = () +
X
 6=

() +
X
 6=

(y) (2)

where   ≥ 0 represent primitive preference parameters.
Social utilities in (2) are implicitly defined as solutions of a system of equations. As in

Bergstrom (1999), this system has a unique well-behaved solution if and only if max(B)  1

where max(B) denotes B’s largest eigenvalue. The matrix M = (I − B)−1(I +A) then
has nonnegative elements and social utilities are equal to v =Mu. Letting  = ,

we can represent agents’ social preferences in the following reduced-form:13

(y) = () +
X
 6=

() (3)

We assume further that   1, so that an agent values her own private utility more

than any other agent’s private utility. The collection of bilateral coefficients  defines the

altruistic network α. By convention  = 0. When   0,  ultimately cares about ’s

private well-being and the size of the coefficient measures the strength of the altruistic tie.

Caring about others’ social utilities, as in (2), implies caring about others’ private

utilities, as in (3). In general, many different primitive preferences can lead to the same

reduced-form preferences. In particular, we say that an altruistic network is consistent

with deferential caring if there exist underlying primitive preferences where agents only

care about others’ social utilities (Pollak 2003). Formally, this holds when there exists

B ≥ 0 such that  = 0, max(B)  1 and  =  withM = (I−B)−1. We will see
that deferential caring induces specific restrictions on the shape of the altruistic network

and on giving behavior.

We make the following joint assumption on private utilities and altruistic coefficients

∀ ∀ 0()  
0
() (4)

13Since   0,  and  represent the same preferences.
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This condition guarantees that an agent’s gift to a friend never makes this friend richer than

her. Indeed, when agent  plays a best-response, she chooses her transfers to  to equalize

her marginal utility 0() and the discounted marginal utility of , 
0
(). Therefore,

  0⇒   . In particular, an agent never gives away all her income and the budget

constraint  ≥ 0 is always satisfied in equilibrium.
The collection of agents, transfers and altruistic utilities defines a simultaneous game.

Our main objective is to study the Nash equilibria of this game and how equilibrium

transfers T and consumption y depend on incomes y0 and on the altruistic network α. In

equilibrium, each agent chooses her transfers to maximize her altruistic utility conditional

on transfers made by others.

The transfer game exhibits a complex pattern of strategic interactions and externalities.

An agent tends to reduce her transfer to a friend when this friend receives more transfers

from others and to increase her transfer when her friend makes more transfers herself.

Thus, transfers to an agent from different givers are strategic substitutes while transfers

to and from an agent are strategic complements. An agent also suffers a loss in utility

from her friend’s transfers to others, but benefits from the transfers her friend receives.

Externalities may be positive or negative, and the externality pattern is rooted in the

structure of the altruistic network. These externalities imply that Nash equilibria are

typically not Pareto-optima. A well-known exception is a situation where one agent makes

transfers to all the others (Becker 1974, Arrow 1981). We further discuss the misalignment

between equilibrium behavior and welfare in Section III.

III Equilibrium analysis

In this section, we describe key properties of Nash equilibria. We show that equilibria are

the solutions to the problem of maximizing a concave potential function. Building on this

reformulation, we establish existence, uniqueness of consumption and generic uniqueness

of transfers and we characterize the geometric structure of the network of transfers.

Let us first introduce a few notions and notations. Let  =
n
T ∈ R2

+ :  = 0⇒  = 0
o

be the set of networks of transfers where agents only give to others they care about. If
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  0, define  = − ln() which we refer to as a transfer cost over the link ( ). This

is a virtual rather than an actual cost which is lower when the altruistic link is stronger.

The graph of transfers is the binary graph where  is connected to  if   0. A path

connecting  and  in T is a set of distinct agents 1 = , 2,..., +1 =  such that 12  0,...,

+1  0. A cycle is a set of agents 1 = , 2,..., +1 =  such that 1,...,  form a path and

+1  0. An undirected path is a path of the undirected graph where  is linked with 

when   0 or   0, and similarly for an undirected cycle. Network T is acyclic when

it has no cycle and is a forest when it has no undirected cycle. The cost of path 1, 2,...,

+1 in α is equal to
P

=1 +1. A least-cost path connecting  to  in α has the lowest

cost among all paths connecting both agents.

Since  is concave as a function of T for any T−, the first-order conditions of ’s

utility maximization are necessary and sufficient. Therefore, a network of transfers T is a

Nash equilibrium if and only if the following conditions are satisfied:

∀  0() ≥ 
0
() and   0⇒ 0() = 

0
() (5)

In particular,  = 0 ⇒  = 0. Agents only give to others they care about. Together

with (4), these conditions imply that consumption levels decrease along any path of the

transfer network. In particular, transfer networks must be acyclic in equilibrium.

To illustrate, suppose that agents have homogenous CARA utilities () = −−.
Conditions (5) become: ∀   ≤  +  and   0⇒  =  + . The difference

in consumption between a richer agent  and a poorer friend  has an upper bound which

is proportional to , and this bound is attained whenever a transfer is made.

Interestingly, we can view equilibria of the transfer game as solutions to a social plan-

ner’s problem with concave objective function

(T) =
X


Z 

1

ln(0())−
X

:0

 (6)

since the first-order conditions of this maximization problem over  are exactly (5). In

fact,  is a best-response potential for the transfer game, in that ’s best-response to T−
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is exactly argmaxT
(TT−) (Voorneveld 2000).

This property is useful for intuition, as it shows that equilibrium behavior trades-off

two motives. The first part of the potential function, (y) =
P



R 
1
ln(0()), can

be viewed as a measure of inequality reduction. Indeed,  is a concave function which

is maximized at the utilitarian optimum y∗ = argmaxy
P

 (). For instance under

common CARA utilities, (y) = (y∗)− 1
2
 (y) where  (y) denotes the variance

of the consumption profile. Nash equilibria generally do not maximize welfare, however,

because of the second term in the potential. If we interpret  as the cost of transferring

1 unit of money from  to , then this term,
P

:0
, represents the overall cost of

transfers T.

In particular, the potential property implies that equilibrium transfers minimize the

overall cost of reaching y from y0. This turns out to be a classical problem of optimal

transportation on networks, known as “minimum-cost flow”, with well-known implications

(Ahuja, Magnanti & Orlin 1993). In particular, it implies that transfers flow through least-

cost paths of the altruistic network. Indeed, if some money flows from  to  through a path

that does not have lowest cost, we can reduce transfer costs without altering consumption

by redirecting transfers through a least-cost path. It also provides another explanation for

the acyclicity of transfer networks, as eliminating a cycle reduces transfer costs without

changing consumption.

Together with assumption (4), the acyclicity of transfer networks implies that the con-

sumption distribution second-order stochastically dominates the income distribution. In-

deed, consumption can be obtained from incomes via bilateral Pigou-Dalton redistributions

from richer to poorer agents. Consumption inequality is thus lower than income inequality

for all measures in the Atkinson class (Atkinson 1970).

We assemble these properties and further implications of the potential in the following

theorem. A property is said to hold generically if the set on which it does not hold has

measure zero. Proofs are provided in the Appendix, except when stated otherwise.

Theorem 1 A network of transfers T is a Nash equilibrium if and only if T maximizes the

concave function  over . A Nash equilibrium exists. Equilibrium transfers are acyclic
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and flow through least-cost paths of α. The profile of equilibrium consumption y is unique,

continuous in y0 and α, and second-order stochastically dominates y0. Generically in α,

the network of equilibrium transfers is unique and is a forest.

We briefly comment on the more technical parts of the theorem. We show that we

can restrict attention to bounded transfers, leading to existence.14 To prove uniqueness of

consumption, we express the potential as a function of consumption only and show that this

reformulated potential is strictly concave in y. This extends the result obtained by Arrow

(1981) for groups to networks.15 Continuity follows from an application of the maximum

theorem. Finally, we prove the generic results through a thorough analysis of the problem

of cost-minimization in Supplementary Appendix A. We show that under multiplicity, some

equilibrium transfer network must have an undirected cycle and that this can only happen

non-generically.

Theorem 1 shows that equilibrium determination falls within the domain of convex

optimization. We can thus adapt classical algorithms to compute Nash equilibria in practice

(Bertsekas 2015). In particular, the potential cannot decrease when one agent plays a best

response. We show in Supplementary Appendix B that under uniqueness, sequences of

asynchronous best-responses converge to the equilibrium. We make use of this property in

our numerical simulations below.

Can we further characterize Nash equilibria and their architecture? The least-cost

property reveals a tight relationship between the altruistic network and the network of

transfers. We next explore some of its implications. Note first that some altruistic links are

never activated. To formalize this property, introduce the transitive closure of the altruistic

network, α̂, as follows: ̂ = Π
=1+1 if 1, 2,..., +1 is a least-cost path connecting 

to  and ̂ = 0 if  is not connected to  through a path in α. Agents who are indirectly

connected in α are directly connected in α̂. A network is transitive if α = α̂. Theorem 1

then implies that  = 0 in any equilibrium if   ̂. When the direct link between 

and  is weaker than an indirect connection, money never flows directly from  to .16

14Alternatively, existence follows from Corollary 2 in Mercier Ythier (2006).
15Arrow (1981) assumes that (y) = () +

P
 6=(). This corresponds to formulation (3) when

the altruistic network is complete, i.e., ∀ 6=   = ,  =  and  = .
16Conversely, there exists an equilibrium with   0 if  = ̂  0.
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In some cases, the graph of transfers can be fully determined by the least-cost property.

Consider, for instance, a connected altruistic network with a rich benefactor. Suppose

that agent  has much higher income than anyone else. Money then flows from this rich

benefactor to all other agents. The generic condition identified in Theorem 1 guarantees

that there is a unique least-cost path connecting  to any . All links in these least-cost

paths are activated and allow financial support to trickle down from the rich benefactor to

distant agents.17 The following example illustrates.

Example 1 Five agents are connected through an altruistic network depicted in the Left

panel of Figure 1, with links of different intensities. The Right panel depicts the graph of

transfers in equilibrium when agent 1 has high income. The direct link between 1 and 3 is

weaker than their indirect connection through 2, hence money does not flow directly from

1 to 3. There are two paths connecting 2 to 5, and transfers flow through the stronger, or

least-cost, path 2− 4− 5.

u1
u2

0.6

u
3

0.7 u4

u
50.2

0.40.5

0.1

u1
u2

u
3

u4

u
5

½
½
½½>

-

? ?

Figure 1: The graph of transfers with a rich benefactor.

This example illustrates the key role played by transfer intermediaries, i.e., agents who

both give and receive in equilibrium. These agents allow money to flow from richer to

poorer parts of society. From Theorem 1, we see that transfer intermediaries can only

appear when there are holes in the altruistic network. When   0 and   0 in

equilibrium, then   ̂ =  and the direct link between  and  is weaker than

their indirect connection through . We show next that this condition is, in fact, necessary

and sufficient.

17Formally, the graph of transfers is then a directed spanning tree minimizing the sum, over , of the

costs of the paths connecting  to 
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Theorem 2 There exists a Nash equilibrium without transfer intermediary for every y0 if

and only if the altruistic network α is transitive. This holds whenever α is consistent with

deferential caring.

To prove Theorem 2, we develop a constructive procedure which, starting from any

Nash equilibrium, builds an equilibriumwithout transfer intermediaries, see Supplementary

Appendix C. The idea is to redirect through direct links the transfers originally flowing

through indirect links. This can be done while respecting equilibrium conditions precisely

when the network is transitive.

Theorem 2 also shows that transfer intermediaries generally do not emerge under def-

erential caring.18 To see why, suppose that  cares about  and  cares about . Agent 

then internalizes the fact that her friend  is herself altruistic. In the reduced-form pref-

erences,  ultimately depends on . The altruistic network induced by deferential caring

is thus transitive. With two agents, caring about the other’s private or social utility yield

equivalent formulations, a fact long noted by researchers (Bernheim & Stark 1988). Theo-

rem 2 shows that this equivalence breaks down under network interactions. Caring about

others’ social utilities only leads to strong restrictions on the structure of reduced-form

preferences.

Theorems 1 and 2 have empirical implications and may help inform the debate on

the motives behind private transfers. Applied researchers have started to collect detailed

information on transfers (Fafchamps & Lund (2003), de Weerdt & Fafchamps (2011)).

Acyclicity and the forest structure provide testable implications, easy to check given data

onT. Within our framework, the least-cost property allows researchers to infer information

on the altruistic network from observed transfers, even without information on private

utilities. Moreover, the presence of transfer intermediaries in the data indicates that social

preferences may not be consistent with deferential caring.19

18By contrast, an altruistic network may be transitive without being consistent with deferential caring,

see Supplementary Appendix C.
19Bringing the model to data would of course raise a number of issues including stochastic and dynamic

aspects and transaction costs. We can easily incorporate real transfer costs in our framework in the

following way. Assume that when  gives  ,  only receives (1− ) . Then,  = −0 + (1−
)

0
 and the game with transfers costs has the same Nash equilibria as the game with no transfer costs

and with altruistic links 0 = (1− ).
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IV Comparative statics

In this section, we study how changes in incomes and in the altruistic network affect

consumption. We analyze how an altruistic society responds to individual income shocks

and how public policies redistributing income across agents may be altered by private

transfers. We also analyze how changes in altruistic preferences affect consumption. These

effects are complex, and we show that a reduction in income inequality or an increase in

altruism may end up creating more inequality.

A Changes in incomes

Our comparative statics result on incomes is two-fold. First, consumption is weakly increas-

ing with incomes. A positive income shock to an agent weakly benefits everyone. Second,

we characterize how consumption varies locally with incomes. This allows us to consider

more complex changes, such as small redistributions. Understanding these effects requires

a description of the generically unique equilibrium T generated by initial incomes y0. De-

note by  the component of agent  in T. This set contains  and agents connected to 

through an undirected path in T. For any other profile of incomes ỹ0 and subset , let

̃0() =
P

∈ ̃
0
 denote the aggregate income of agents in .

Theorem 3 Equilibrium consumption  is increasing in 
0
 and weakly increasing in 

0
 for

any  6= . Generically in α and y0, there exists a neighborhood V of y0 and an increasing
continuous function  for every  such that ∀ỹ0 ∈ V, ̃ = (̃

0()).

The monotonicity result seems intuitive: positive or negative shocks on individuals are

absorbed by the whole network. To see this, consider incomes ỹ0 that differ from y0 only

in that ̃0  0 . Then let  = { : ̃  } be the set of agents that are negatively affected
by this positive shock on ’s income. Suppose by contradiction that  is nonempty, and

let  ∈  . Then, for any agent  such that ̃  0, equilibrium conditions (5) imply

that 
0
() ≤ 0()  0(̃) = 

0
(̃), where the strict inequality follows from the

definition of  . Hence, it must be the case that  ∈  . Similarly, for any agent  such

that   0, equilibrium conditions imply that 
0
() = 

0
()  

0
(̃) ≤ 0(̃), and
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therefore  ∈  . To summarize, no money flows out of  in T̃ and into  in T. This

implies that ̃0() ≤ ̃()  () ≤ 0(), where the strict inequality comes from the

definition  . This is impossible, however, since all incomes are weakly higher in ỹ0.

The second result characterizes the effect of small changes in incomes on consumption.

This effect depends on the structure of equilibrium transfers before the change. Everything

works as if the components of this transfer network constituted income-pooling communi-

ties. In particular, a small redistribution is neutral if and only if it does not redistribute

income across components of the initial network of transfers. Small redistributions within

components leave consumption unaffected. Changes in incomes are then offset by adjust-

ments in private transfers. More generally, the consumption of an agent increases if and

only if the income of her component has increased, and even though her own income may

have decreased.

To understand the result, note first that we focus on altruistic networks that generate

a unique equilibrium, hence the genericity in α. We then show that generically in y0, the

graph of transfers is locally invariant in incomes. Indeed, by continuity,   0⇒ ̃  0

and 0()  
0
()⇒ 0(̃)  

0
(̃) if ỹ

0 is close to y0. Hence the graph of transfers

may be affected by small changes in incomes only when  = 0 and 0() = 
0
(). In

that case, the link between  and  is on the edge of activation. It may or may not be

activated depending on the direction of the income change. We show in Supplementary

Appendix D that such situations are non-generic in y0. Finally, pick a connected component

 and some  ∈ . Because of the forest structure of transfer networks, equilibrium

conditions (5) imply that, for any income ỹ0 in a neighborhood of y0, the marginal utility

of any agent  ∈  is proportional to the marginal utility of , with a coefficient that only

depends on α. The consumption of any agent in , and hence aggregate consumption

in , can then be written as an increasing function of ’s consumption. Since aggregate

consumption is equal to aggregate income within components, ’s consumption can be

written as an increasing function of ’s income. The following example illustrates.

Example 2 Suppose that  = {  },  gives to  and  gives to . Consider common

CARA utilities with  = 1. Consumption levels solve three equations, two obtained from
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conditions (5):  =  + ,  =  +  and the conservation of income within :

++ = 0(). Solving these equations yields increasing functions of the component’s

income:  =
1
3
0()+ 2

3
+

1
3
,  =

1
3
0()− 1

3
+

1
3
 and  =

1
3
0()− 1

3
− 2

3
.

Theorem 3 extends, in our context, the result of Bernheim & Bagwell (1988) showing

that any small redistribution is neutral when the network of transfers is connected. Such

situations seem to be rare, however, in practice. We investigated this issue through extensive

numerical simulations. For instance, consider 20 agents with common utilities () = ln().

Pick  uniformly at random between 025 and 075 and 
0
 uniformly at random between

0 and 1000. Over 1000 runs, the network of transfers is connected in only 06% of the

runs.20 Therefore even with dense altruistic networks of strong ties, the network of transfers

is generally not connected. Small redistributions between components are therefore not

neutral.

In particular, the poorest agent’s consumption drops if her component’s income is

reduced. A reduction in income inequality may thus increase consumption inequality, as

shown in the following example.

u3 u8 u0

u3 u5 u3-
3

u5 u5 u1

u5 u4 u2-
1

Figure 2: Reducing income inequality may increase consumption inequality.

Example 3 Three agents, depicted in Figure 2, have common CARA utilities with  =

2. The Left Panel depicts initial incomes y0 and consumption y; the Right Panel depicts

redistribution ỹ0 and consumption ỹ. The redistribution decreases income inequality by

20The network of transfers has, on average, 27 isolated agents and at least two components with more

than 2 agents in 935% of the runs. We ran simulations under a variety of assumptions. For instance, when

incomes follow a Pareto distribution with minimum value 100 and tail index 116, the network of transfers

is connected in only 167% of the runs.
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transferring money from the richest to poorer agents. However, it ends up reducing con-

sumption of the poorest and aggravating consumption inequality in the sense of second-order

stochastic dominance.

We show in Supplementary Appendix D that the logic of the example generalizes.

Consider altruistic networks composed of two separate communities. When the difference

in communities’ incomes is high enough, any redistribution from a rich agent in the poor

community to a poor agent in the rich community increases consumption inequality.

B Changes in the altruistic network

We finally study how consumption varies with the altruistic network. A change in one part

of the network may have far-reaching repercussions. We identify who gains and who loses

from a change in the intensity of an altruistic tie. Intuitively, if  becomes more altruistic

towards ,  will consume less and  will consume more. But all agents that  was already

making transfers to will also benefit, as  should give them more, and all those who were

making transfers to  will be able to give less to . This logic should extend to all agents

who are initially connected to  by transfer paths that do not go trough . Our result

shows that this intuition indeed holds. To see that, we consider an increase in  holding

other links unchanged. We say that the change is effective if it affects consumption ỹ 6= y.
Generically in α, the initial equilibrium T is a forest and we define the subcomponent

(T) of  in T as the component of  in the network obtained from T by setting  = 0,

and similarly for . Given two networks of transfers T and T̃, denote by T∩ T̃ the graph
such that  = 1 if   0 and ̃  0.

Theorem 4 Generically in α and y0, a small effective increase in  is such that (T) =

{ : ̃  } and (T) = { : ̃  }. An effective increase in  is such that (T ∩
T̃) ⊂ { : ̃  } and (T ∩ T̃) ⊂ { : ̃  }.

Thus a small increase in altruism decreases the consumption of the giver and increases

the consumption of the receiver,21 but also decreases the consumption of every agent indi-

21The increase is only effective when ̃  0.
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rectly connected to the giver and increases the consumption of every agent indirectly con-

nected to the receiver. This characterization partially extends to large increases, through

the graph of transfers which are positive both before and after the change. Depending on

the shape of the network of transfers, this may reduce the consumption of the poorest and

increase inequality.22 The following example illustrates.

Example 4 Six agents, depicted in Figure 3, have common CARA utilities with  = 3.

The Left Panel depicts the original network α, formed of two separate lines. The Middle

Panel depicts equilibrium T and consumption y. The Right Panel depicts equilbrium T̃ and

consumption ỹ in network α̃ where a new connection is added between the richest agent on

the left and the poorest agent on the right. The new connection increases consumption of

agents on the right, to the detriment of agents on the left, and increases inequality in the

sense of second-order stochastic dominance.

u24 u27
u15 u15
u9 u 9

u19 u20
??u16 u17
??u13 u14

5 7

4 5

u18 u21
??u15 u18
??u12 u15

3 6

3 3

A
A
A
A
A
A
A
AAU

3

Figure 3: An expansion of the altruistic network can increase inequality.

Thus, an expansion in the altruistic network may increase, or decrease, inequality de-

pending on where this expansion takes place. While these effects are generally complex,

their impact becomes unambiguous at the extremes of the range of possible networks. Any

altruistic network reduces inequality compared to the empty network (Theorem 1). At the

other extreme, consider a connected network and hold the set of altruistic links constant.

By continuity, consumption converges towards the utilitarian optimum as altruistic coef-

ficients become arbitrarily close to 1. Under common utilities, this leads to equal sharing

and minimizes inequality, even on asymmetric networks like stars.

22Consumption  may also vary non-monotonically in  , see Supplementary Appendix D.
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APPENDIX

Proof of Theorem 1. Arguments in the text prove the potential and least-cost path

properties. Acyclicity and the budget constraints,
P

 6=  −  ≤ 0 for each , together

imply that no transfer can exceed aggregate income
P

 
0
. We can then rewrite the set of

Nash equilibria as argmaxT∈0 (T), where 0 = {T ∈  : ∀   ≤
P

 
0
}. This set is

closed and bounded, and hence compact. Since  is continuous, a Nash equilibrium exists.

For the uniqueness of equilibrium consumption, let

(yy0) = min
T∈

X
():0

 s.t. ∀ 0 +
X
 6=
( − ) = 

be the value function of the cost minimization program associated with the potential.

(yy0) is continuous and convex in y as the value function of a linear minimization pro-

gram. Now note that we can rewrite the problem of finding consumption as maxy (y)−
(yy0). (y) being strictly concave and (·y0) convex, this program has a unique solu-

tion.

For the second-order stochastic dominance property, we show that consumption can be

obtained from incomes through a series of Pigou-Dalton transfers from richer to poorer

agents. Consider an equilibrium T. By acyclicity, there is an agent  who does not receive.

From the initial incomes, apply ’s transfers first, in any order. Then remove  and repeat

until there is no transfers left. This procedure leads to an ordering of all pairwise transfers

and hence yields equilibrium consumption. This ordering also guarantees that a transfer

always takes place from a richer to a poorer agent.

The proof of the generic uniqueness and forest structure of equilibrium transfers is

derived in Supplementary Appendix A. ¤
The proof of local results in Theorems 3 and 4 relies on the following lemma

Lemma 1 Generically in (αy0), there exists a neighborhood V of (αy0), such that for
every (α̃ ỹ0) ∈ V, the (unique) equilibrium transfer networks T and T̃ have the same

graph, i.e. for every ( ),   0⇔ ̃  0.

Proof of Lemma 1. First, by Theorem 1, we consider only generic α that lead to a

unique equilibrium for every y0. Second, we choose (αy0) so that in the corresponding

equilibrium,  = 0 ⇔ 0()  
0
(). We show in Supplementary Appendix D that

this property is generic, and, therefore, holds in a neighborhood of (αy0). By the maxi-

mum theorem, both equilibrium transfers and consumption is locally continuous at (αy0).

Therefore, there exists a neighborhood V of (αy0), such that for every (α̃ ỹ0) ∈ V, we
have   0⇒ ̃, and  = 0⇔ 0()  

0
()⇒ 0(̃)  

0
(̃)⇔ ̃ = 0. ¤

Proof of Theorem 3. The fact that all agents benefit from a positive income shock to 

is proved in detail below the theorem. To show that  benefits strictly, suppose that ỹ0 and

y0 differ only in that ̃0  , and let  = { : ̃  } 6= ∅. By the same argument as
above, 0( ) ≤ ( )  ̃( ) ≤ ̃0( ). But since  is the only agent whose income strictly

increases, it must be that  ∈  .
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Then by Lemma 1, we can consider a generic (αy0) such that the graph of the unique

equilibrium transfer network is constant over a neighborhood V of y0. Let  and  be in the
same connected component  of T. Then there exists a unique path  = 0 1 · · ·   = 

of distinct agents such that, for every  = 0 · · ·  − 1, +1  0 or +1  0. For each
, let +1 = +1  0 in the first case, and +1 = −1+1  0 in the second case.

Equilibrium conditions (5) imply that we can write 0() = 0()
Q−1

=0 +1 . Since

 and  were chosen arbitrarily in , this implies that we can write the consumption of

any agent  in  as an increasing function () of ’s final consumption. The function

 only depends on the altruism network α, and, by construction, this relationship also

holds for any alternative income profile ỹ0 ∈ V. Then, for any such ỹ0, we can write that
aggregate income in , ̃0(), is equal to aggregate consumption in  because,  being

a connected component of the transfer network, no money flows in or out of . HenceP
∈ (̃) = ̃0(). Since the left-hand side is an increasing function of ̃, it shows that

̃ can be written as an increasing function of ̃
0(). ¤

Proof of Theorem 4. By the same continuity argument behind Lemma 1, we can pick a

generic (αy0) and a neighborhood V of  such that the graphs of transfers for (α− ̃)

such that ̃ ∈ V coincide on all arcs except possibly ( ). This allows us to include the
case where  is such that  = 0. Note that, for an increase in ̃   to be effective, it

must be the case that ̃  0. Using the same method as in the proof of Theorem 3, we can

write the consumption of any agent  ∈  as an increasing function of ’s consumption,

(̃), and of any agent  ∈  as an increasing function of ’s consumption, (̃). Let

(̃) =
P

∈ (̃) and (̃) =
P

∈ (̃). In the equilibrium transfer network, no

money flows in or out of  ∪ , therefore

(̃) +(̃) = 0( ∪ ) = () +() (7)

Now, note that, in the initial network α, we must have 0() ≥ 
0
(). Since the

increase is effective, ̃  0 and hence 
0
(̃) = ̃

0
(̃). Let ( ) =

¡
0
¢−1¡

0()
¢
. It

is increasing in  and decreasing in , and we can write ̃ = (̃ ̃) and  ≥ ( ).

Replacing in (7), we have


¡
(̃ ̃)

¢
+(̃) ≥ 

¡
( )

¢
+()  

¡
(̃ )

¢
+()

where the second inequality comes from ̃  . Since 
¡
(̃ ·)

¢
+(·) is an increasing

function, this implies ̃  , which immediately implies that ̃   for every  ∈ . We

show similarly that consumption of every agent in  decreases strictly.

Next, consider an effective increase ̃  . Let  = { : ̃  } 6= ∅. If  ∈ 

and   0, then 
0
() = 0()  0(̃) ≥ ̃

0
(̃) and hence  ∈  . Winners give

to winners in T. Similarly if ̃  0 and ( ) 6= ( ), then  ∈  . Winners receive from

winners in T̃−. If  ∈  or  ∈  or ̃ = 0, then 0() ≤ ()  ̃() ≤ 0() which

is impossible. Thus, ̃  0 and  is a winner. Any  ∈ (T ∩ T̃) can be reached from 

through a path in T∩ T̃−, with links flowing downards in T and upwards in T̃−. Hence
 is also a winner. A similar argument applies to  and losers. ¤
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