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Abstract

This paper studies a model of social contest between two large groups, in which indi-
vidual agents can choose whether or not to actively support their group. They become
active supporters if they expect their group to win with a sufficiently high probability.
The identity of the winner is decided according to a deterministic social rule that is a
function of the groups’ strengths and activity rates. Agents have imperfect and hetero-
geneous information, from both public and private sources with known precisions, about
the strength of the other group. No modification of the information structure gives an
unambiguous advantage to one particular team. The effects of private and public preci-
sions on equilibrium outcomes are always opposed. Increasing the precision of the public
information of a group has the same effect as increasing the sensitivity of the social rule to
its activity rate, illustrating the idea that public information favors collective action. For
a particular example of the social rule, the paper characterizes the information structure
that would arise endogenously in two different settings: a disclosure game between group
leaders and a contest design.

1 Introduction

Many economic environments have been described as contests or all-pay auctions, including

R&D races, lobbying, elections, rent seeking. Contests have also been proposed as a way to

provide incentives in the workplace. The common feature of these situations is that they involve

agents incurring a cost in order to compete for a prize. The contestants are generally modeled

as individual decision makers. However, in many real situations they are groups (firm, political

party, special interest group, R&D teams) of individuals who each have some input in the action

∗This paper has benefitted from discussions with Manuel Amador, Doug Bernheim, Matt Jackson, Paul
Milgrom, Gerard Padro-i-Miquel, Romans Pancs, Ilya Segal and Andy Skrzypacz.
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of the group. These groups may be organized in different ways, and decision-making within

these groups can be more or less centralized and more or less cooperative, with an impact on

the way the group plays. This paper proposes a model of contest between two teams, in the

case of incomplete information environments with groups where decision-making is completely

decentralized and non-cooperative.

The paper focuses on the coordination problem between agents within each team and on

the impact of the information structure. If the probability of winning the contest for a team

increases with the aggregate effort of its members, there are strategic complementarities between

agents. If, for instance, individuals have to choose between a low and a high level of effort, they

will be more inclined to choose the high level if their teammates choose the high level as well.

It is well known that in these conditions, the aggregate effort of a team is sensitive to the fine

structure of its members’ beliefs prevailing because an agent has more incentives to contribute

to the collective effort if she is confident that her team has good chances to get the prize,

and that other agents in her team are also confident about it, and are confident about their

teammates being confident, and so on. With incomplete information, and a rich information

structure, the modeler, or prominent players in the model, have several levers to influence the

beliefs of the team members. For example, if each team has imperfect information about the

strength of the other teams. Is a team more likely to win the contest when it has very precise

information about its opponents? Or is ignorance a more effective way to ensure high levels of

contribution? Does a more homogeneously informed group stand more chances to win? What

is the best information structure from the point of view of a contest designer who wants to

maximize the total contribution? What information structures emerge if they are determined

by the strategic choices of some individual team leaders?

This paper provides a framework in which these questions can be analyzed and at least

partially answered. It is strongly related to a recent theoretical literature1 that has focused

on the problem of coordinating expectations of populations of agents, and on the effects of

1In particular Morris and Shin (2002b), Hellwig (2005), Angeletos and Pavan (2007).
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public and private information. For example, Morris and Shin (2007) gives an account of how

central bankers have come to understand their role as one of coordinating the expectations of

economic agents through the communication of public information. This paper takes the view

that other prominent institutions play such a coordinating role. Political parties, for example

seek to coordinate the beliefs of their supporters in order to raise campaign contributions. In

this case the problem is not merely one of coordinating agents, but of coordinating them on

the right action from the point of view of the party (contributing). In an electoral contest, a

party should also try to coordinate the supporters of the other party on a more passive action

(no contribution). Lobbying by special-interest groups and advocacy wars can be analyzed very

similarly. Another example is the design of R&D policies or workplace incentives. It has been

argued that contests give incentives to expend effort. However, it is important, in order to

obtain this effect, to coordinate the expectations of the members in each team so that they

believe they can win with a sufficiently high probability or they may consider that it is not

worth trying.

The model is highly stylized and is meant to illustrate possibly interesting trade-offs in the

provision of information. No exogenous cost of communication or information is assumed and

all trade-offs arise endogenously. It is a contest game between two teams consisting each in a

continuum of agents. A team is characterized by its strength. Individuals face the binary choice

of whether to be active in their group, where being active can imply things such as exerting

effort, contributing financially, and simply acknowledging support for one’s group (this may

entail some reputation or opportunity costs for example). The aggregate action of a team is

identified with the proportion of its members who are active. The outcome of the contest

(i.e. the identity of the winner) is decided according to a deterministic social rule2 that favors

higher “strength”3 and activity rates. Payoffs are such that agents are willing to be active

if their estimated probability of winning the contest is sufficiently high, which is obtained by

2That can be understood as a reduced form for a more complex process such as an election.
3Strength is in fact defined by the social rule itself and does not have any other intrinsic meaning, it is

assumed to be payoff irrelevant ex post.
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assuming that being active is rewarding in case of victory and costly otherwise. Agents know the

strength of their team but have imperfect information about the other team, both from private

and public sources with known precisions, so that the ex interim beliefs are heterogeneous

within groups. This framework makes it possible to study the effects of information structures

(i.e. the precisions) on equilibrium outcomes.

The first part of the paper is concerned with the existence and uniqueness of equilibria. I

start with equilibria that satisfy a certain monotonicity property (that if a group wins with a

certain strength, it also wins when its strength is increased), and Proposition 1 characterize the

strategies used in these equilibria in closed form, up to one function (the frontier function) that

determines the pivotal pairs of strength parameters (it gives the level of strength needed by

one group to overcome a given level of strength of the other group in equilibrium). Theorem 1

provides a functional equation as well as a necessary condition to be satisfied by the equilibrium

frontier function, andTheorem 2 gives a sufficient (and almost necessary) condition on the

primitives of the model for the existence of such an equilibrium. The latter also shows that

this equilibrium is unique in its class whenever the sufficient condition for existence is satisfied.

Finally Theorem 3 shows that the equilibrium is unique among all equilibria under an additional

assumption on the primitives. The assumption is an analog for the present framework of the

dominance region condition in the global games literature. It requires the existence of regions

in the space of strength parameters such that one of the groups wins regardless of the actions

played.

Some comparative statics results are summarized in Proposition 3. Interpretations for these

results are provided through a series of remarks. In particular, no modification of the infor-

mation structure can strictly expand the winning set of a group, that is the set of strength

parameters such that this group is the winner. On the other hand, a change in the payoff

structure, or in the realization of the public signals, always strictly expands the winning set of

one group, and shrinks that of the other one. The direction of all these effects changes depend-

ing on whether the private precisions are high or low relative to the public precisions. This is
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most striking for the public signals and the payoff parameters. With relatively precise private

information, higher public signals about the strength of the opponent induce smaller winning

sets, but the opposite is true when public information is very precise. An intuition is that when

public information is precise, players become more aggressive as they learn that their opponent

is strong because they believe that their teammates will do the same. Conversely, when public

information is not reliable, players do not trust their teammates and shy away. The same is true

with incentives. Increasing the difference between the payoffs of active and passive agents in

case of victory and decreasing it in case of defeat naturally expands the winning set of a group

if the private precision is relatively high. However, if public information is sufficiently precise

relative to private information, this natural intuition no longer holds, and the result of that

change in payoffs is actually to shrink the winning set of the group. This offers an explanation

of the casual observation that some groups with seemingly poor incentives or very bad news

about their chances can actually do better. The intuition is again that bad public news or bad

incentives make individuals more aggressive with respect to their private signals when these are

relatively unprecise with respect to the public ones. Another interesting result (Proposition 4)

is that increasing the precision of the public information of one group has the same effect as

increasing the sensitivity of the social rule to the collective action of that group. This result

formalizes neatly the idea that public information favors coordination.

Finally, the last part of the paper considers a particular case that makes closed form calcula-

tions particularly simple, yielding an expression for the ex ante probability to win implied by the

equilibrium. These formulas are used to provide ex ante comparative statics in Proposition 5

showing the effects of public precisions on the probabilities of winning. I proceed to analyze

two decision problems played at the ex ante stage that endogenize the information stucture. In

the first setting, two team leaders commit ex ante to the precision of the information they will

disclose to the other team upon learning their own strength. Their objective is to maximize the

probability that their group wins the contest, and their decision gives rise to a game which is

analyzed in Proposition 6. The second setting considers the problem of a contest designer who
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designs rules of public disclosure of information across groups in order to maximize the total

activity rate of the agents (Proposition 7).

2 Related Literature

From a methodological perspective, this paper is related to the literature on games of regime

change and provides a natural extension of this literature. In these models, a continuum of

agents decide whether to attack an institution, whose ability to defend itself depends on the

size of the attack and on the fundamentals of the economy (that play a role that is analogous to

that of the strength parameter of the other team in our model), which is imperfectly observed

by the agents. The game is sequential in that the institution plays after having observed the

size of the attack. In our model, each team is similar to the continuum of agents in the currency

attack model. However all agents play simultaneously. But when the strategy profile of one of

the teams is fixed, and assumed to depend on the parameters with appropriate monotonicities,

the best response problem of the other team looks exactly like the coordination game analyzed

by Morris and Shin. Therefore the global game information structure can be used to shrink

the best response range of each team and give it some structure much in the same way as it

is used for equilibrium selection in the coordination games. This also suggests that the ideas

underlying this paper can in principle be extended to more general models with more than two

teams, and with many other generalizations (finite number of players in each team, larger action

sets, more general information structures) that have proved tractable for global coordination

games as in Morris and Shin (2002a), and Frankel, Morris and Pauzner (2003).

The paper is also related to the literature on group play, i.e. games played between and by

groups. Duggan (2001) defines “group Nash” equilibrium as a solution concept that is non-

cooperative across groups and cooperative within groups. Charness and Jackson (2007) take

their observations of an experiment on a Stag Hunt game played by groups of two as a starting

point to build a new solution concept called robust-belief equilibrium. However, most of the

6



literature on group play is experimental and Bornstein (2008) provides an interesting survey.

In particular, Bornstein (2008) introduces a classification of the games literature according to

the nature of the players (Nature, Individual, Unitary groups, and non-cooperative Groups) and

argues that some cells have been little explored such as the G-G cell (non-cooperative groups

versus non-cooperative groups) into which the model of this paper falls.

3 The model

3.1 Setup

Players, Actions, and Outcomes. There are two teams g ∈ {−1, 1} of players consisting

each of a continuum (a non-atomic space (I, I, λ)g with finite measure normalized to 1) of

agents. Agents are indexed by i ∈ Ig. In each group, agents decide whether to be active

ai ∈ A = {0, 1}. The activity rate of group g is defined as the measure of the set of active

agents lg = λg
(
{i ∈ Ig|ai = 1}

)
. The outcome of the contest is the identity of the winning

group, and I also allow for a neutral outcome 0 in which the teams are tied. The outcome space

is denoted by Ω = {−1, 0, 1}.

Social Rule. The outcome of the contest is decided according to a social rule contingent on

the activity rates of the groups, and a state of the world θ = (θ−1, θ1) ∈ R2 that captures the

uncertainty of the agents about the bias of the social rule. The bias of the rule towards group

g is assumed to be increasing in θg and decreasing in θ−g. Hence, θg is to be interpreted as a

strength parameter for group g. The social rule is also assumed to favor higher activity rates.

Assumption 1 (Smooth Social Rule). The social rule is fully described by a continuously

differentiable function R : R2 × [0, 1]2 → R such that:

(i) The outcome of the contest is given by the sign of R(l1, l−1, θ1, θ−1): team 1 wins if

R(l1, l−1, θ1, θ−1) > 0, and team −1 wins if R(l1, l−1, θ1, θ−1) < 0. Otherwise, the teams

are tied.
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(ii) R is strictly increasing in l1 and θ1 and strictly decreasing in l−1 and θ−1.

R can be interpreted as the ex post bias of the social rule towards group 1. To make

notations symmetric, I define the functions R1 = R and R−1 = −R, so that Rg denotes the

ex post bias towards g. The sign function is a mapping from the real line to the set {−1, 0, 1}

that maps any negative number to -1 and any positive number to 1. For some results, it will

be useful to consider that a social rule satisfies the following property.

Definition 1 (Dominance Regions (DR)). The social rule has dominance regions if for every

θ1 ∈ R there exists ψ(θ1) and ψ(θ1) in R such that R
(
0, 1, θ1, ψ(θ1)

)
= R

(
1, 0, θ1, ψ(θ1)

)
= 0.

This assumption means that, conditional on any realization of g’s strength parameter θg,

there exists a state of the world where g wins regardless of the activity rates, and a state of

the world where g loses regardless of the activity rates. It is a dominance region assumption

because if the players of a group are sure to be in a region of the strength space in which they

can win the contest regardless of activity rates, it is a dominant strategy for them to be active

and reap the benefits of a certain victory.

Payoffs. The ex post payoff of a player depends only on her own action and the outcome of the

game. Hence the payoff function of a player i ∈ Ig is a function vi,g : A× Ω→ R. The benefit

of being active for player i ∈ Ig given an outcome ω is ∆i,g(ω) = vi,g(1, ω) − vi,g(0, ω). It is

assumed to be strictly positive when ω = g and strictly negative otherwise, so that being active

is strictly profitable in case of victory, and strictly detrimental in any other case. This has the

effect of assuming free-riding away, and it supposes that the group is able to detect free-riders

with a strictly positive probability. For notational simplicity, I assume that the payoff in case

of neutral outcome is the same as the payoff in case of defeat, and let ¬g denote the event

{0,−g}. The cost of activity is

γg =
−∆i,g(¬g)

∆i,g(g)−∆i,g(¬g)
∈ (0, 1),

where the index i has been omitted because I make the assumption that this cost parameter
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is homogeneous within groups. It captures the (dis)incentive of the player to become active.

Intuitively, the higher γg, the less players in group g want to become active. This parameter

can be used as a policy variable by a group leader. For example, for given payoffs to active and

inactive members, a higher ability of the group to recognize the ones from the others in case of

victory would lower γ and increase the incentive to become active.

Information Structure. The strength parameters are initially drawn independently from a

normal distribution with mean 0 and precision P̄ . This state of information is referred to as

the ex ante stage in the rest of the paper.

An agent i in team g is perfectly informed about the strength of its own team θg, and

receives a noisy private signal xi,g and a noisy public signal yg about the strength of the other

team θ−g. The public signals are fully public, meaning that each of them is observed by the

agents of both teams. The signalling technology is defined as follows

Private Signals: xig = θ−g + p−1/2
g εi , εi ∼ N (0, 1), (1)

Public Signals: yg = θ−g + P−1/2
g ηg , ηg ∼ N (0, 1), (2)

where all the noise terms are independent from one another. pg is the precision of private

information of team g and Pg is the precision of public information of team g. This state of

information is the ex interim stage. Bayesian rationality implies that the interim beliefs of an

agent i ∈ g about θ−g upon receiving signals x and y are given by a normal distribution with

mean

mg(x, y) =
pg
Πg

x+
Pg
Πg

y, (3)

and precision

Πg = P̄ + Pg + pg.

Πg is called the total accuracy of information. mg(x, y) is the best forecast4 of an agent in team

4The one that minimizes expected errors.
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g with signal (x, y).

The expected payoff of an agent i ∈ g with private signal x and public signal y according

to her ex interim beliefs is

Pei,g = ai

((
vi,g(1, g)− vi,g(1,¬g)

)
Pr
(
ω = g|x, y

)
+ vi,g(1,¬g)

)
+ (1− ai)

((
vi,g(0, g)− vi,g(0,¬g)

)
Pr
(
ω = g|x, y

)
+ vi,g(0,¬g)

)
, (4)

where the event ¬g means that either −g wins or the neutral outcome is reached.

Note that the distinction between public-signals-updated priors and priors plays no role in

the equilibrium analysis to follow. The distinction is introduced at this stage in order to study

the specific effects of public information once equilibrium behavior is pinned down.

3.2 Examples

Example 1 (A model of Elections). Suppose that the population is divided into three groups:

a large group of non partisans of size N , and two groups of partisans of either 1 or -1, with size

Ng < N . The quality of group g’s candidate is θg, and I assume that the probability that a

non-partisan votes for g is equal to exp(θg)/(exp(θg) + exp(θ−g)). The fraction of partisans of

group g that decide to support their group is given by lg. Partisans may decide not to support

their group, because ex post it is harmful for them to do so if their party is not elected. The

score of party g in the election is then given by

N
exp(θg)

exp(θg) + exp(θ−g)
+Nglg,

and the contest gives rise to the social rule function

Rg =
(
N +Nglg −N−gl−g

)
exp(θg)−

(
N +N−gl−g −Nglg

)
exp(θ−g).
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It is easy to see that this social rule satisfies the smoothness assumption of Assumption 1 and

(DR).

Example 2 (Output Contest). This can be a setup for the R&D contest model. Two competing

technologies or theories are described by a technological parameter Ag = exp(θg). The number

of contributions by an R&D team is lg. The output or total quality of contribution of group g

is given by Ag exp

(
Φ−1(lg)

)
. The social rule just compares the outputs of the two teams. This

gives rise to a smooth social rule that does not satisfy (DR) Rg = θg +Φ−1(lg)−θ−g−Φ−1(l−g).

This example is particularly useful because it yields very simple close- form calculations.

Example 3 (Raising Contributions). The population is composed of a group of non-partisans

of size N and two groups of partisans of size exp(θg). Partisans decide whether to finance their

group. Contributions are fixed in size, so the total contribution for g is proportional to lg. A

non-partisan has a probability lg/(lg + l−g) to vote for g. Hence the score of group g can be

defined as exp(θg) + N lg
lg+l−g

, the total number of votes in favor of g assuming that partisans

always vote for their party, even if they did not contribute. Then the social rule is smooth and

satisfies ((DR)).

4 Equilibrium Analysis

4.1 Definitions

The full information type of an agent i ∈ Ig is a vector (θg, yg, y−g, xi). Since the public signals

are both observed by all the agents of both groups, I can omit them in the description of the

informational type and let the type of agent i be (θg, xi). A pure strategy for agent i is a

mapping ai : R2 → A from her type space to the action space. A strategy profile for group g is

completely described by a function ag : R2 × Ig → A such that ag(θg, xi, i) is the action taken

by agent i upon receiving a private signal xi. In the following, it will be useful to consider the

function ag(θg) = ag(θg, ., .). A full strategy profile is a pair of functions π = (ag, a−g).
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Figure 1: Outcomes on the Type Space

Given a strategy profile π, an informal law of large numbers5 over the set of agents Ig implies

that the probability that an agent with signal x participates is given by

ρπg (x; θg, yg, γg) =

∫
Ig

ai(x)dλg(i).

And I can define the team strategy of team g as

lπg (θg, θ−g) =

∫ ∞
−∞

ρg(θ−g + ε; θg, yg, γg)dΦ(ε), (5)

where Φ(.) is the cdf of the standard normal distribution.

Therefore, a strategy profile π induces a new bias function Rπ on the space of strength

5See Judd (1985) for a formulation of the issue of casually applying a law of large number to a continuum
of random variables, and Hammond and Sun (2006) and Sun (2006) for a proper way of doing it, and a
justification of its use in this paper. Note that the issue is generally ignored in the literature. Duffie and Sun
(2004) and ? are useful additional readings.
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parameters defined by

Rπ(θ1, θ−1) = R

(
lπ1
(
θ1, θ−1

)
, lπ−1

(
θ−1, θ1

)
, θ1, θ−1

)
.

The induced bias function Rπ is (strictly) monotonic if it is (strictly) increasing in θ1 and

(strictly) decreasing in θ−1. It seems natural to expect equilibrium strategy profiles that parti-

tion the space of strength parameters in two regions such that each group wins when it is rather

strong and the other group rather weak (Figure 1). A way to formalize this idea is through the

following definition.

Definition 2 (Strictly Monotonic Single Crossing Property). Rπ satisfies (SMSCP) if there

exists a strictly increasing continuous function ψ1 : R→ R such that

sign
(
Rπ(θ1, θ−1)

)
= sign

(
ψ1(θ1)− θ−1

)
.

The definition further assumes that the two regions can be separated by a strictly increasing

continuous function in the space (θ1, θ−1) such that group -1 wins in the region above the graph

of that function and group 1 wins in the region below that graph. Note that when (SMSCP)

is satisfied, I can define the function ψ−1 =
(
ψ1

)−1
that plays a symmetric role in the space

(θ−1, θ1). In what follows, any of the ψ functions are referred to as a frontier function since the

graph of either of them defines the frontier between the winning regions of the two groups. In

looking for equilibria, I start by focusing on equilibria that satisfy (SMSCP) before considering

other equilibria. Note that these equilibria form a superset of the class of monotonic equilibria.

Definition 3 (Monotonic Equilibrium). The players are said to use monotonic strategies if they

use strategies that are increasing in their group type θg and decreasing in their individual type

xi. A monotonic equilibrium is a Bayesian Nash equilibrium in which agents use monotonic

strategies.

Lemma 1. A monotonic equilibrium of the group contest game satisfies (SMSCP).
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Proof. See Appendix A.

4.2 Characterization

A simple manipulation of the expected payoff equation (4) shows that it is optimal for a

player i in group g to be active if and only if her estimated probability of winning (given

her informational type) is strictly higher than her payoff parameter γg. Assuming that the

other players are playing according to a strategy profile that satisfies (SMSCP)6 the probability

that g wins according to i is given by

Pr
(
θ−g < ψg(θg)|x, θg

)
= Φ

(
Π1/2
g

(
ψg(θg)−mg(x, y)

))
. (6)

Therefore a few calculations yield the following proposition that gives a formula for the strategies

used by the players in an equilibrium in strategy profiles that satisfy (SMSCP).

Proposition 1. In an equilibrium that satisfies (SMSCP), the players become active if their

best forecast mg(x, y) of the strength parameter of the other group is strictly below a threshold

m̂g = ψg(θg)︸ ︷︷ ︸
Pivotal Strength

−Π−1/2
g Φ−1(γg)︸ ︷︷ ︸

Cost Recovery Term

. (7)

The activity rates are then given by

lg(θg, θ−g) = Φ
(
ε̂g(θg, θ−g)

)
, (8)

where

ε̂g(θg, θ−g) = p−1/2
g

(
Πgψg(θg)− pgθ−g − Π1/2

g Φ−1(γg)− Pgyg
)
. (9)

Proof. See Appendix A.

6Because of the continuum assumption, no deviation of player i can cause the full strategy profile not to
satisfy (SMSCP).
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The proposition shows in particular that in these equilibria, players use monotonic strategies.

The threshold best forecast m̂g that prevails in group g is equal to the pivotal strength of the

opponent ψg(θg) (i.e. the value of θ−g at which the outcome changes, given θg) plus a term

arising from the need to recover the cost of activity γg. Note that the information structure

affects both the threshold best forecast of the group, and the way agents form their best forecast

as apparent in equation (3). Finally, the term ε̂g is the threshold noise term corresponding to

the threshold best forecast m̂g. For given strength types, the agents of group g that become

active are those who receive a signal with a realized noise term below ε̂g.

To obtain a full characterization of the equilibria that satisfy (SMSCP), I need to char-

acterize the equilibrium frontier functions
(
ψg
)
g=−1,1

. This is done in the following theorem,

through an equation that defines the frontier function implicitly. The equation is a consequence

of the fact that a pair of strength parameters (θg, θ−g) that lie on the frontier must at the same

time satisfy θ−g = ψg(θg) =
[
ψ−g

]−1

(θg), and make the bias in the social rule equal to 0.

In order to state the theorem, I introduce some preliminary notations. Let

R̃g

(
., ., ., .

)
= Rg

(
Φ(.),Φ(.), ., .

)
, (10)

and

αg = p−1/2
g

(
P̄ + Pg

)
, (11)

βg = p−1/2
g

(
Pgyg + Π1/2

g Φ−1(γg)
)
. (12)

Note that R̃ : R4 → R is just a rescaling of the social rule function R : [0, 1]2 × R2 → R and

that it is still continuously differentiable.

The theorem also gives a (tautological) condition for the existence of an equilibrium that

satisfies (SMSCP) which is simply that the equation that implicitly defines the frontier can be

solved and that the solution is as required by (SMSCP).

Theorem 1. The group-contest game admits an equilibrium that satisfies (SMSCP) if and only
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if

(i) For every θ ∈ R, there exists a solution ψ(θ) ∈ R̄ to the equation in ψ

R̃g

(
αgψ − βg , α−gθ − β−g , θ , ψ

)
= 0. (13)

(ii) The function ψ thus defined is continuous and strictly increasing.

And in this case, the equilibrium frontier is defined by ψg(θg) = ψ(θg).

Proof. See Appendix A.

Note that in condition (i), the equation is stated for either of the two groups, but this

does not matter since when the equation admits a solution for one group and (ii) is satisfied,

the equation stated for the other group must admit a solution. This would not be true if the

solution was not required to be strictly increasing, and hence invertible.

4.3 Existence and Uniqueness

As formerly noticed, Theorem 1 gives a tautological condition for existence, and a sufficient

condition for existence that can be checked easily on the primitives of the model would be more

interesting. Equation (13) suggests the use of an implicit function theorem. However, while

the usual implicit function theorems are local, I need a solution ψ(.) to equation (13) that is

defined on the whole real line. The following global implicit function theorem from Zhang and

Ge (2006) provides us with the appropriate mathematical tool

Lemma 2. Assume that f : Rn×Rm → Rm is a continuous mapping and that it is continuously

differentiable in the second variable u ∈ Rm. If

∣∣∣∣[ ∂∂uf(x, u)

]
ii

∣∣∣∣−∑
j 6=i

∣∣∣∣∣
[
∂

∂u
f(x, u)

]
ij

∣∣∣∣∣ ≥ d, ∀(x, u) ∈ Rn × Rm, i = 1, · · · ,m, (14)
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for a fixed constant d > 0, then there exists a unique mapping g : Rn → Rm such that

f(x, g(x)) = 0. Moreover, this mapping g is continuous. Additionally, if f is continuously

differentiable, then the obtained g is also continuously differentiable.

Proof. The Lemma is stated in this form and proved in Zhang and Ge (2006)[Theorem 1]. A

version with m = 1 and without the last result is proved in Ge and Wang (2002) [Lemma

1].

The condition in equation (14) is a dominant diagonal condition on the matrix of derivatives

of f with respect to u. For our problem, I only need the case m = 1. The application of this

result provides us with a sufficient condition on the partial derivatives of R̃g for the existence

of an equilibrium. The sufficient condition has two interpretations. It can be understood as a

requirement that the frontier function ψ(.) solves equation (13) and is strictly increasing, or as

a requirement that the frontier function solves equation (13) for a certain g and that its inverse

solves the same equation stated for the other group −g. The sufficient condition as stated also

implies uniqueness. Each function R̃g is a continuously differentiable function (by assumption)

of four real variables and I denote its k-th partial derivative by ∂kR̃g.

Theorem 2. Suppose that there exists a constant d > 0 such that for every (θ, ψ) ∈ R2, it

holds that

[
−
(
αg∂1 + ∂4

)
·
(
α−g∂2 + ∂3

)]
R̃g

(
αgψ − βg , α−gθ − β−g , θ , ψ

)
≥ d. (15)

Then there exists a unique equilibrium in strategy profiles that satisfy (SMSCP). Furthermore,

the frontier function ψg is then continuously differentiable in θg, and in the parameters on any

open set of the parameters where the condition of equation (15) is satisfied.

Proof. See Appendix A for a detailed proof. The argument is outlined below.

In the notations of the theorem, ∂k is an operator and I use natural operations on operators to

form other operators. Hence
[
−
(
αg∂1+∂4

)
·
(
α−g∂2+∂3

)]
must be read as an operator applied to
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the function R̃g to obtain a new function evaluated at the point
(
αgψ−βg , α−gθ−β−g , θ , ψ

)
.

Note that when the condition of equation (15) is satisfied, the frontier function ψ is continuously

differentiable and, by implicit differentiation, its derivative with respect to θ is given by

ψ′(θ) =

[
−α−g∂2 + ∂3

αg∂1 + ∂4

]
R̃g

(
αgψ(θ)− βg , α−gθ − β−g , θ , ψ(θ)

)
, (16)

and must be strictly positive. Because the condition also implies, by Lemma 2, that there

exists a solution ψ to equation (13) I obtain the desired conclusion that the solution exists and

is strictly increasing.

It is important to notice that the condition in Theorem 2 bears on all the primitives of the

game i.e. both the social rule function and the information structure. It is possible for example

that with a given social rule, an equilibrium exists (and is unique) for a certain specification

of the information structure but not for another one (see Section 5.2 where the particular case

of Example 2 is treated). This is a significant restriction when doing comparative statics with

respect to the information structures. The condition is also quite restrictive since it has to hold

uniformly.

Holding the information structure fixed, the condition on the partial derivatives says that

the ratio of the marginal effect of the activity rate of group g on the social rule function over

the effect of the strength of group −g must be either high for both g = −1, 1 or low for both.

Holding these marginal effects fixed, the condition says that the relative precision of the private

signal (that is the ratio between private and public precision) must be either high for both

groups or low for both groups. The condition also suggests that increasing the sensitivity of

the social rule to the collective action plays the same role as increasing the relative precision of

the public signals, which is coherent with the natural intuition that better public information

helps coordination. The intuitions mentioned in this paragraph find a formal expression in

two results in the remainder of the paper (Proposition 2 and comments, and Proposition 4).

The condition can also be related to symmetry. When both the information structures and the
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social rule are symmetric, an equilibrium always exists. When either the information structures

or the social rule becomes asymmetric for the two groups, equation (15) cannot be satisfied.

Finally, the condition is almost necessary since in order to satisfy the strictly increasing

frontier condition, a continuously differentiable solution to equation (13) would have to satisfy

that, for every (θ, ψ) ∈ R2,

[
−
(
αg∂1 + ∂4

)
·
(
α−g∂2 + ∂3

)]
R̃g

(
αgψ − βg , α−gθ − β−g , θ , ψ

)
> 0. (17)

Theorem 2 also proves uniqueness in the class of equilibria that satisfy (SMSCP). The

next theorem proves that this equilibrium is the unique equilibrium of the group contest game

when the condition of Theorem 2 is satisfied and the social rule satisfies the dominance region

condition (Definition 1). The proof relies on iterated deletion of strictly dominated strategies

as in Milgrom and Roberts (1990), even though the payoffs of the game are not generally

supermodular.

Theorem 3. If the social rule function satisfies (DR) and the condition in Theorem 2, the

group contest game admits a unique equilibrium. In this case, the equilibrium strategy profile is

the unique profile that survives iterated deletion of strictly dominated strategies.

Proof. See Appendix A.

Note that the result is not true in general for social rules that do not satisfy (DR) as

illustrated by Example 2. For this example, it is always an equilibrium of the game that all

the agents in one group decide to be active while all the agents in the other group decide to be

passive. In particular, it is also the case when there exists an equilibrium in strategy profiles

that satisfy (SMSCP).

The last result of this section gives a simple sufficient condition on the partial derivatives of

R̃g for an equilibrium to exist when private precisions in both groups are sufficiently high relative

to public precisions, and another one such that an equilibrium exists when public precisions
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in both groups are sufficiently high relative to private precisions. If the first result is clearly

reminiscent of the literature on global games, the second one is more surprising since precise

public information and imprecise private information tend to generate multiple equilibria in

this literature (see Hellwig (2002)).

Proposition 2. An equilibrium of the group contest game that satisfies (SMSCP) exists when-

ever either of the following holds:

(i) There exists m > 0 and η > 0 such that ∂1R̃g(z)

η−∂4R̃g(z)
and −∂2R̃g(z)

η+∂3R̃g(z)
are both bounded below by

m for every z ∈ R4, and the information structure satisfies p
1/2
g ≤ m

(
P̄ + Pg

)
for every

g.

(ii) There exists M > 0 and η > 0 such that ∂1R̃g(z)

−η−∂4R̃g(z)
and −∂2R̃g(z)

−η+∂3R̃g(z)
are both bounded

above by M for every z ∈ R4, and the information, and the information structure satisfies

p
1/2
g ≥M(P̄ + Pg) for every g.

Proof. See Appendix A.

In particular, when both boundedness assumptions are satisfied, equilibria exist both in

high and low relative private precision regions.

5 Comparative Statics

5.1 General Results

The fact that the frontier functions are continuously differentiable in the parameters when they

exist makes the comparative statics exercise relatively easy by implicit differentiation. On any

connected open set of the parameters such that the condition of Theorem 2 is satisfied, there

are two possibilities:

(i)
(
αg∂1 +∂4

)
R̃g

(
αgψ−βg , α−gθ−β−g , θ , ψ

)
> 0 and

(
α−g∂2 +∂3

)
R̃g

(
αgψ−βg , α−gθ−

20



Figure 2: Comparative Statics. A: effect of an increase in pg on the frontier function ψg
when the parameters lie in U−. B: effect of a decrease in γg on the frontier function ψg when
the parameters lie in U−.

β−g , θ , ψ
)
< 0,

or

(ii)
(
αg∂1 +∂4

)
R̃g

(
αgψ−βg , α−gθ−β−g , θ , ψ

)
< 0 and

(
α−g∂2 +∂3

)
R̃g

(
αgψ−βg , α−gθ−

β−g , θ , ψ
)
> 0,

Let U− denote the reunion of all the open sets of parameters that fall in the first category, and

U+ denote the union of open sets of parameters that fall in the second category. The following

proposition gives a summary of all the comparative statics results. Intuitions and comments

follow the proposition.

Proposition 3 (Comparative Statics).

1. On U−:

(i) ψg is increasing (decreasing) in pg, −Pg, −p−g and P−g for high (low) θgs.

(ii) ψg is increasing in yg, γg, −y−g and −γ−g for every θg.

2. On U+:
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(i) ψg is increasing (decreasing) in −pg, Pg, p−g and −P−g for high (low) θgs.

(ii) ψg is increasing in −yg, −γg, y−g and γ−g for every θg.

Proof. See Appendix A.

The claim of the proposition was made a bit imprecise in order to make a global statement.

The precise meaning of the proposition is best illustrated by an example. Fix a vector of

parameters (pg, Pg, yg, γg)g∈{−1,1}, suppose this vector lies in U−, and consider the change of the

frontier function ψg(.) induced by a marginal increase in the precision of the private information

pg of group g. Then, there exists a θ̂ in R such that all the points of the graph of the function

ψg(.) such that θg > θ̂ move upward, while all the points such that θg < θ̂ move downward

(see Figure 2). θ̂ is the point of the frontier at which the comparative statics with respect to

pg switches. The proposition says that such a switching point can be found for each of the

precision parameters, but it is generally not the same for, say, pg and Pg, and it also varies with

the point considered in the parameter space (the vector (pg, Pg, yg, γg)g∈{−1,1} in our example).

For realized values of the public signal yg, y−g and payoff terms γg and γ−g, the proposition

says that they induce uniform shifts of the winning sets, and that the direction of these shifts

depends on whether the parameters lie in U− or U+. A few remarks help making a general sense

of this comparative statics exercise that uncovers several interesting insights.

Remark 1. No marginal change of the information structure can uniformly expand the winning

set of a given group in the space of parameter strengths.

Remark 2. Changes in the payoff structure or in the realizations of the public signals induce

uniform shifts of the winning sets of the groups.

More precisely, any change in one parameter of the information structure that gives the edge

to one of two sufficiently strong tied groups would have the opposite effect for two sufficiently

weak tied groups. On the other hand, a change in the payoff structure or in the realized public

signals always strictly expands the winning set of one of the groups.
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Remark 3. Private and public precisions of a given group always have opposite effects on the

frontier.

As it is intuitive, public information favors collective action by facilitating coordination

while private information makes agents beliefs less correlated. This intuition is confirmed in

Proposition 4.

Remark 4. While the public signals and the payoff parameters have natural effects on the

frontier in U−, their effects are reversed in U+.

This remark provides an interesting result. Indeed, remember that from Proposition 2, when

public precisions are sufficiently precise relative to private precisions, the parameters must lie

in U+. The comparative statics implies that when public information is precise in this way,

bad news become good news, and bad incentives become good incentives. The intuition is that

when public information is relatively precise, bad news or bad incentives make all the agents

more aggressive about their private information. Therefore, if the first remarks seem to suggest

a limited role for the information structure, or at least an ambiguous one, the latter remark

suggests a much more important role: the relative precisions of private and public information

can radically change the role of incentives and public signals. For example, I mentioned above

that the incentive parameter γ was decreasing in the ability of the group to identify and punish

free-riders in case of victory. The latter remark implies that when public information is relatively

precise it is better for the group to be softer on free-riders or to detect them inefficiently. In the

same way, an enemy who threatens to punish those active members of the other group in case

of defeat may obtain a result opposite to the one intended if public information is relatively

precise.

The last result of this section illustrates the links between public information and collective

action. It shows that increasing marginally the sensitivity of the social rule to the collective

action (activity rate) of group g has the same effect as increasing marginally the precision of

public information for that group, or decreasing marginally the precision of private information
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for that group. I formalize the increase in sensitivity as follows. Given a social rule Rg, I

consider the social rules Rλ
g for λ > 0 which are defined by

R̃λ
g (lg, l−g, θg, θ−g) = R̃g(λlg, l−g, θg, θ−g).

Social rules with a higher λ are more sensitive to the activity rate of group g. I let ψλg denote

the frontier function associated with the social rule Rλ
g . It solves the equation

R̃g

(
λ(αgψ − βg) , α−gθ − β−g , θ , ψ

)
= 0. (18)

Proposition 4.

1. On U−, ψλg is decreasing in λ for high θgs and increasing in λ for low θgs.

2. On U+, ψλg is increasing in λ for high θgs and decreasing in λ for low θgs.

Proof. See Appendix A.

5.2 A Particular Case

In the remainder of the paper, the social rule is that of Example 2, which compares scoring

functions given by

s(lg, θg) = Φ−1
(
lg
)

+ θg. (19)

This defines a social rule that satisfies all the required assumptions but does not satisfy

(DR). It has the advantage that all the partial derivatives of the corresponding function R̃g are

constant. It is easy to prove that for this case the unique equilibrium of the game that satisfies

(SMSCP) is defined by the frontier function

ψg(θg) =
α−g − 1

αg − 1
θg +

βg − β−g
αg − 1

. (20)
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It is strictly increasing (and hence indeed a frontier function) on the set U = U−∪U+ where

U− and U+ correspond to their definition in the general case and are here defined precisely by

U− =

{
(pg, p−g, Pg, P−g) ∈ R4|∀g, 1 < αg

}
(21)

U+ =

{
(pg, p−g, Pg, P−g) ∈ R4|∀g, 1 > αg

}
. (22)

Hence U− is the region of low relative private precisions while U+ is the region of high relative

private precisions. The comparative statics of Section 5.1 naturally applies here. The advantage

of this example is that it makes the calculation of the ex ante probability of winning tractable,

and thus enables ex ante comparative statics with respect to the information structure. In

order to make the expressions less cumbersome, I state the result assuming symmetric cost

parameters γ−1 = γ1 = γ and precision of private information pg = p−g = p and perform

comparative statics with respect to the public precisions. This is done in the spirit of the next

section that considers the public precisions as a policy variable for different decision makers.

Public precision is arguably a more reasonable policy variable than private precision.

Proposition 5.

1. If costs are low (γ < 1/2) and the precision of public information is relatively high in

both teams (Pg, P−g >
√
p − p̄ ), then Pr[g wins] > 1/2 if and only if P−g > Pg. The

same holds if costs are high (γ > 1/2) and the precision of public information is low

(Pg, P−g <
√
p− P̄ ).

2. If costs are low (γ < 1/2) and the precision of public information is relatively low in

both teams(Pg, P−g >
√
p − p̄ ), then Pr[g wins] > 1/2 if and only if Pg > P−g. The

same holds if costs are high (γ > 1/2) and the precision of public information is high

(Pg, P−g <
√
p− P̄ ).

Proof. See Appendix A.
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6 Endogenous Information Structure

6.1 A Strategic Game of Disclosure

Suppose each team is managed by a team leader whose objective is to maximize the probability

that her team wins the contest. The only information available to the team leaders is the

prior on both θg, θ−g, in particular they don’t know their own team’s strength. Based on this

information, they commit to a disclosure policy, that is they pick the precision of the noisy

public signal that they will send to the other team. That is team g chooses P−g. The teams are

assumed to be symmetric in every other respect, that is in costs and precision of the private

information. Their choice is based on the assumption that in the subsequent game played by

the agents of both teams the equilibrium in strategy profiles that satisfy (SMSCP), described

above, will be reached. This is problematic because for this example because, as mentioned

above, there are multiple equilibria since full activity on one side and full inactivity on the other

side is an equilibrium. The use of equilibria that satisfy (SMSCP) also implies limitations in the

strategy spaces available to the players, since for some pairs of actions (Pg, P−g) a responsive

equilibrium does not exist. Let K = [K,K]2 ⊂ R2
++ be a compact square from which team

leaders pick their actions (Pg, P−g). If K ⊂ U+ or K ⊂ U−, the problem of non-existence of a

responsive equilibrium does not bind.

Proposition 6.

1. If γ < 1/2, and K ⊂ U+, then the unique Nash equilibrium of the disclosure game is

Pg = P−g = K.

2. If γ < 1/2, and K ⊂ U−, then the unique Nash equilibrium of the disclosure game is

Pg = P−g = K.

3. If γ > 1/2, and K ⊂ U+, then the unique Nash equilibrium of the disclosure game is

Pg = P−g = K.

26



4. If γ > 1/2, and K ⊂ U−, then the unique Nash equilibrium of the disclosure game is

Pg = P−g = K.

Proof. See Appendix A.

If instead I assumed that the team leaders are playing a game where they decide ex ante

(with commitment) on the level of noise that they will use to transmit public information about

the strength of the other team that they learn ex interim to their own team, the results above

would just need to be reversed. That is, the results that obtain for low costs above would obtain

for high costs in this new game, and vice versa.

6.2 A Contest Design Problem

Knowing how the game is played, given a certain information structure, allows a social planner

or a contest designer to design appropriate rules about information disclosure. Assume that

the designer controls the precision of the public information exchanged between the two teams.

There are externalities that make the efforts expended by both teams valuable, so that the

designer wants to maximize the expected total participation in the contest. However she also

takes into account the money transfer needed to reward the winners and the utilities of all the

contestants. The players receive a monetary payoff of 1 from the designer when they are active

in the winning team, 0 if they are not active, and pay an effort cost γ whenever they are active.

The objective function of the designer is then given by

α(lg + l−g)− lwin +
(
lwin − γlwin

)
− γllose = (α− γ)(lg + l−g) (23)

where lwin and llose are the participation rates in the winning team and the losing team and α

is how much she valued total participation. I assume α > γ.

The designer is therefore maximizing the expected total participation given her information

ex ante. Assume that the two teams have symmetric cost structures and private information
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precisions, and that the designer is constrained to choose a symmetric rule for public information

disclosure. In this case, by symmetry, the designer maximizes

E (lg + l−g) = 2E(lg). (24)

These assumptions lead to the following result

Proposition 7. If costs to participate are low (γ < 1/2), a full disclosure policy P → ∞ is

optimal for the designer, and the maximal expected total participation is then 2(1− γ). If costs

to participate are high (γ > 1/2) then a partial disclosure policy with P =
√
p − P̄ is optimal

and the maximal expected total participation is 1. In the knife-edge case where γ = 1/2, the

choice of disclosure rule is irrelevant.

Proof. See Appendix A

In particular, the optimal participation rate is linearly decreasing in the cost parameter γ

for low costs, but stays constant after γ reaches 1/2. Also, it is independent from the private

information structure (even though the private information structure does affect the optimal

choice of the public information structure for high costs).

7 Applications

This section provides some examples of situations that are reasonably well described by the

model

Political Competition between fragmented parties. Two political parties compete for

power. Each of the parties is infinitely fragmented in the sense that it is composed of many

politicians or factions with a small individual weight who take independent decisions about

whether to support their party in the campaign. In case of success, support is rewarding since

it gives access to political decision. However, it entails a cost since it associates the individual

politician or the faction to the official positions of the party during this particular campaign,
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potentially jeopardizing their future careers. Hence it pays to join the party in case of success,

but it is better to abstain in case of failure. The chances of success depend on the number

of participants in each party, and on some other idiosyncratic characteristics of the parties.

To capture that, each party has a scoring function, and the political process is assumed to

accurately appoint the party with the highest score. The idiosyncratic characteristic of a party

could be for example the quality of its program, the degree of mobilization among its partisans,

the quality of its communication strategy, the quantity of funds available for campaign financing

or any other attribute that is relevant for success, and about which it could be reasonable to

assume asymmetric information. Indeed, each politician is assumed to know the characteristic

of its own party perfectly, while being only imperfectly informed about the characteristics of

the other party.

Contribution Races. Two projects compete for implementation by a central authority. The

performance of each project depends on an inherent characteristic and on its ability to raise

contributions among its partisans. An example could be lobbying. Two special-interest groups

support incompatible policies. The inherent characteristic of a policy is its marketability to-

wards a wide audience. In order to prevail, each group needs to be able to raise funds among its

supporters. Another example is one of two competing projects each with their pool of potential

investors (venture capitalists) who decide whether to back the project and invest in it. One

can also think about two competing theories in a research field, each endowed with a pool of

researchers who could possibly contribute a paper to a theory.

Ethnic Conflicts. In an ethnically divided society, the members of an ethnic group benefit

if power is seized by one of their members. However, in a transition phase, they may also be

reluctant to support a leader from their group in case another group prevails and decides to

punish the supporters of his opponents. The beliefs of the agents in each group will matter

crucially in this case, and the leaders may decide to engage in demonstrations of force to convey

a message to other ethnic groups and try to deter them from supporting their own leaders.

Team Bonus within a Firm. Firms often try to give incentives to its employees by awarding
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a bonus to the team that performs best. To fix ideas, think of a Fund with teams of traders that

operate in different markets, or a retail group with teams of sellers in different locations. The

performance of each team depends on the total effort of its members, and on some exogenous

parameter (the strength parameter) that is idiosyncratic to each team. This parameter can

be a characteristic of the environment that each team is operating in, or a characteristic of

the technology operated by the team (where technology is understood broadly): for instance

characteristics of the specific market in which a team is operating for the Fund, and local

demands for the retail group. The members of each team decide whether to exercise effort. They

know their team parameter perfectly but have imperfect and idiosyncratic private information

and public information about the opponents’ team parameter. A rationale for the idiosyncratic

component may be that employees have different domains of expertise.

Wars. In wars, information about the opponent is crucial not only to the generals but also

to soldiers who may behave very differently depending on their beliefs about the forces of the

enemy. There is indeed a coordination problem, and for an army to be strong, its members

need to be confident about their chances but also about the beliefs of the rest of the army. The

importance of morale has been long recognized, and the way the use of the media has been

scrutinized and questioned in wars of the past century, leading to very different responses from

the Vietnam war (complete transparency) to the first Gulf war (opacity) may be an illustration

of the importance of the link between information and beliefs of the agents. Other issues can

be discussed with the framework proposed here. For example, a possible interpretation of the

surprise effect is that it creates lack of common knowledge among a group. The private signals

received by the agents are very dispersed and the lack of time to communicate, even by eye

contact, does not allow agents of the group to improve the precision of their private signal by

sampling the signals of other agents. Hence surprise affects the information structure within

the group, and can lead to lack of coordination.
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8 Conclusion

This paper analyzes the role of the information that a continuum of agents hold about their

opponents in a model of conflict between two groups, and proposes an original way to look at

a strategic interaction both within and across groups. It suggests an approach to think about

the role of public and private information in social competition across groups. The second part

of the paper links the decision of a leader to inform her followers more or less precisely to their

incentives to contribute.

A Proofs

Proof of Lemma 1. If the strategies are strictly monotonic, then it is easy to see that lg(θg, θ−g)

has to be strictly monotonic, and therefore so must be the bias induced by the strategy profile

Rπ(θg, θ−g).

Proof of Proposition 1. The probability of winning given the frontier function ψg(.) is strictly

decreasing in the best forecast of the agent mg(x, y). Therefore an agent is better off being

active if and only if mg(x, y) is below a threshold m̂g, where m̂g is the threshold that equalizes

her probability of winning (6) to her cost of activity γg, leading to (3) and the optimal strategies

of the proposition.

By the law of large numbers, the activity rate of group g is equal to the probability that an

agent of group g has a best forecast below m̂g, or equivalently a private signal x below

x̂ =
Πg

pg

(
m̂g −

Pg
Πg

yg

)
.

And using the definition of the signalling technology in (1), this corresponds to a realized noise

in the private signal equal to ε̂g as defined in (9) of the proposition. The activity rate in (8)

obtains from the fact that this noise follows a standard normal distribution.
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Proof of Theorem 1. On the frontier, θ−g = ψg(θg). Replacing this in (9) yields the following

activity rate for group g on the frontier lfg = Φ
(
αgψg(θg) − βg

)
where the expressions for αg

and βg are given in (11) and (12). By symmetry, lf−g = Φ
(
α−gψ−g(θ−g) − β−g

)
, but since

ψ−g =
(
ψg
)−1

, I can write lf−g = Φ
(
α−gθg − β−g

)
. Therefore the bias function on the frontier

is given by R̃g

(
αgψ − βg , α−gθ − β−g , θ , ψ

)
. But since no team wins on the frontier,

this bias must be equal to 0, yielding to the characterization of the frontier in (13). Hence, if

an equilibrium that satisfies (SMSCP) exists, it must satisfy condition (ii) of the proposition

by definition, and, as I just showed, it must also satisfy (i). Suppose instead that there is a

function that satisfies these conditions, letting ψg = ψ and ψ−g = ψ−1 and using the strategies

defined by Proposition 1 provides an equilibrium that satisfies SMSCP.

Proof of Theorem 2. Let f(θ, ψ) = R̃g

(
αgψ − βg , α−gθ − β−g , θ , ψ

)
. Following Lemma 2,

a sufficient condition for the existence of a solution to the implicit equation f(θ, ψ) = 0 is that

there exists d > 0 such that for every (θ, ψ) ∈ R2

∣∣∣ ∂
∂ψ

f(θ, ψ)
∣∣∣ =

∣∣∣∣∣
(
αg∂1 + ∂4

)
R̃g

(
αgψ − βg , α−gθ − β−g , θ , ψ

)∣∣∣∣∣ ≥ d. (25)

However, I also need the solution to be strictly increasing for our purpose. But since the

derivative of a solution ψ is given by (16), it is easy to see that the existence of a d > 0 such

that (15) holds for every (θ, ψ) ∈ R2 ensures both that the sufficient condition for existence

is satisfied and that the solution is strictly increasing. Indeed, because R̃g is continuously

differentiable, the function

(
αg∂1 + ∂4

)
R̃g

(
αgψ−βg , α−gθ−β−g , θ , ψ

)
cannot change sign

while still satisfying (25) for every (θ, ψ).

Proof of Theorem 3. From the definition of (DR), I define two functions ψ
0

1 = ψ and ψ 0

1
= ψ,

where the index stands for the group. Since they are strictly increasing by assumption, I can

define their inverses ψ
0

−1 =
[
ψ 0

1

]−1

and ψ 0

−1
=
[
ψ

0

1

]−1

. With the (DR) assumption, a member

of group g who believes with sufficiently high probability that θ−g is above ψ
0

g(θg) will decide to

remain passive, while if she believes with sufficiently high probability that θ−g is below ψ 0

g
(θg)
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she will decide to become active. This yields some bounds on the activity rates lg and l−g which

in turn yield new frontiers ψ 1

g
and ψ

1

g. Iterating this process leads to functions that bound any

possible equilibrium frontier function above and below. I construct these functions and show

that under the assumptions of the theorem they must be equal to the frontier function of the

unique equilibrium that satisfies (SMSCP).

Let ψ
n

g and ψ n

g
be two strictly increasing continuously differentiable functions from R to

R such that g wins whenever θ−g < ψ n

g
(θg) and loses whenever θ−g > ψ

n

g (θg). Then any agent

in g who believes with a probability higher than γg that θ−g < ψ n

g
chooses to be active. The

number of such agents is given by

l ng = Φ

(
p−1/2
g

(
Πgψ

n

g
(θg)− pgθ−g − Π1/2

g Φ−1(γg)− Pgyg
))
.

Similarly, I can calculate the proportion of agents who believe that θ−g > ψ
n

g (θg) with a

probability higher than 1 − γg, and hence remain passive for sure, and obtain the following

upper bound on the number of agents who become active in group g

l
n

g = Φ

(
p−1/2
g

(
Πgψ

n

g (θg)− pgθ−g − Π1/2
g Φ−1(γg)− Pgyg

))
.

Having done that for both groups, I can obtain bounds on the ex post bias for group g

R n
g (θg, θ−g) = Rg

(
l ng , l

n

−g, θg, θ−g
)
≤ Rg ≤ Rg

(
l
n

g , l
n
−g, θg, θ−g

)
= R

n

g (θg, θ−g).

For each θg, I can find the value of θ−g that would make the upper bound R
n

g (θg, θ−g) equal to

0. Let ψ
n+1

g (θg) this value of θ−g. Then ψ
n+1

g (θg) must solve the equation

R̃g

(
p−1/2
g Πgψ

n

g (θg)− p1/2
g ψ

n+1

g (θg)− βg, p1/2
−g Π−g

[
ψ

n

g

]−1

(ψ
n+1

g )− p1/2
−g θg − β−g, θg, ψ

n+1

g

)
︸ ︷︷ ︸

≡fn
(
θg ,ψ

n+1
g

) = 0.

(26)
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It is easy to see that fn is continuously differentiable in both arguments, strictly increasing

in its first argument and strictly decreasing in the second one. It implies that ψ
n+1

g
exists, is

uniquely defined by this equation, and it is continuously differentiable and strictly increasing.

Furthermore, because −g wins whenever θ−g > ψ
n

g (θg), it must be true that ψ
n+1

g (θg) ≤

ψ
n

g (θg). I can define ψ n+1
g in the same way. And it is true that g wins whenever θ−g <

ψ n+1

g
(θg) and loses whenever θ−g > ψ

n+1

g (θg). In particular this implies that for every θg

ψ n+1

g
(θg) ≤ ψ

n+1

g (θg).

Initiating from the frontiers of the dominance regions ψ 0

g
(.), and ψ

0

g(.), I have obtained

two sequences of continuously differentiable and strictly increasing functions from R to R, and

the sequence
{
ψ n

g

}
is increasing pointwise while the sequence

{
ψ

n

g

}
is decreasing pointwise.

Because for every θg and every n ψ n

g
(θg) ≤ ψ

n

g (θg) each of these sequences converges weakly.

I denote the pointwise limits of these sequences by ψ ∞
g

(θg) and ψ
∞
g (θg) for each θg. The

functions ψ ∞
g

(.) and ψ
∞
g (.) must be weakly increasing by standard arguments, and satisfy

ψ ∞
g

(θg) ≤ ψ
∞
g (θg) for every θg.

I finish the proof by showing that, when there exists a unique equilibrium that satisfies

(SMSCP), characterized by a frontier function ψg, then the sequences above must converge to

that function, ψ ∞
g

= ψg = ψ
∞
g .

For this, fix some θg, and consider the sequences defined by un = ψ
n

g (θg) and vn =[
ψ

n

g

]−1(
un+1

)
. I already know that {un} → ψ

∞
g (θg). And it is also easy to see that if

ψ
∞
g is continuous and strictly increasing on an open neighborhood of θg, then {vn} → θg. It is

more problematic to characterize the behavior of this sequence when θg is a discontinuity point,

or when θg belongs to a closed interval on which ψ
∞
g is constant. I know that, because ψ

∞
g

is weakly increasing, there are countably many such discontinuity points and constant valued

intervals. I can show that when θg is a discontinuity point for ψ
∞
g or the left extremity of a

constant-valued interval, then it is also true that {vn} → θg. Hence at any of these points,

taking the limits in (26), and by continuity of R̂g, I obtain that
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R̃g

(
p−1/2
g Πgψ

∞
g (θg)− p1/2

g ψ
∞
g (θg)− βg, p1/2

−g Π−gθg − p1/2
−g θg − β−g, θg, ψ

∞
g

)
= 0. (27)

That is, after simplification, ψ
∞
g (θg) must solve (13). But the only solution to that equation

is given by the frontier function ψg by assumption. Therefore, ψ
∞
g must coincide with ψg on

every open set on which it is strictly increasing, at every discontinuity point and at every left

end of a constant valued interval. This implies in particular that at every θg, ψ
∞
g (θg) ≤ ψg(θg).

Indeed, suppose that at some θ, ψ
∞
g (θ) > ψg(θ). Then there must exist an open interval and

neighborhood of θ V on which ψ
∞
g is constant valued. Consider the longest possible interval

containing θ and on which ψ
∞
g is constant valued. It must be of finite size because otherwise

it would reach the dominated regions which is impossible. And because ψ
∞
g is left-continuous,

it reaches its left boundary θ−. Hence ψ
∞
g (θ−) = ψ

∞
g (θ) > ψg(θ) > ψg(θ−). But θ− must be

either a discontinuity point of ψ
∞
g , or there must be an interval to the left of θ− where ψ

∞
g is

strictly increasing. In the first case, because of what I found about discontinuity points, and in

the second case, because of what I found about open intervals where ψ
∞
g is strictly increasing

and by continuity, I must have ψ
∞
g (θ−) = ψg(θ−), which is a contradiction.

The same reasoning for ψ ∞
g

(θg) leads to the conclusion that for every θg, ψ
∞
g

(θg) ≥ ψg(θg).

But since for every θg, I know that ψ ∞
g

(θg) ≤ ψ
∞
g (θg), it must be true that, at every θg,

ψ ∞
g

(θg) = ψ
∞
g (θg)ψg(θg). This concludes the main part of the proof.

To see that the equilibrium strategy profile is the only one that survives iterated elimination

of strictly dominated strategies, notice that each new frontier function is obtained from the

former one by eliminating strictly dominated strategies for all the players.

Proof of Proposition 2. (i) In this case, and considering that ∂1R̃g, ∂3R̃g > 0 and ∂2R̃g, ∂4R̃g <

0, I have for every z ∈ R4

(
αg∂1 + ∂4

)
R̃g(z) ≥

(
1

m
∂1 + ∂4

)
R̃g(z) ≥ η,
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and

−
(
α−g∂2 + ∂3

)
R̃g(z) ≥ −

(
1

m
∂2 + ∂3

)
R̃g(z) ≥ η,

so that the sufficient condition of Theorem 2 is satisfied.

(ii) In this case, I have for every z ∈ R4

−
(
αg∂1 + ∂4

)
R̃g(z) ≥ −

(
1

M
∂1 + ∂4

)
R̃g(z) ≥ η,

and, (
αg∂2 + ∂3

)
R̃g(z) ≥

(
1

M
∂2 + ∂3

)
R̃g(z) ≥ η,

and the sufficient condition of Theorem 2 is again satisfied.

Proof of Proposition 3. I show the comparative statics results for pg and yg. Other results are

obtained similarly. Let u =
(
pg, Pg, yg, γg

)
g∈{−1,1} be a vector of parameters such that a frontier

function ψg(., u) is defined in an open neighborhood V of u. Then an application of Lemma 2

shows that this frontier function ψg(., u) is continuously differentiable in the parameters on

V , and its derivative with respect to any of the parameters can be obtained by implicit dif-

ferentiation of (13). To simplify notation I let v =
(
αgψg(θg) − βg, α−gθg − β−g, θg, ψg(θg)

)
.

Differentiating (13) with respect to pg yields

∂

∂pg
ψg(θg, u) = −

(
∂αg
∂pg

ψg(θg)−
∂βg
∂pg

)
︸ ︷︷ ︸

L

(
∂1

αg∂1 + ∂4

)
R̃g(v)︸ ︷︷ ︸

R

. (28)

Since ψg is strictly increasing in θg and ∂αg/∂pg < 0, there exists θ̂ such that L > 0 for θg < θ̂

and L < 0 for θg > θ̂. The other term R is positive on U− and negative U+. Therefore, on U−,

ψg is decreasing in pg for θg < θ̂ and increasing in pg for θg > θ̂, and the opposite is true on U+.
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Differentiating with respect to yg yields

∂

∂pg
ψg(θg, u) =

∂βg
∂yg

(
∂1

αg∂1 + ∂4

)
R̃g(v)︸ ︷︷ ︸

R

. (29)

∂βg/∂yg > 0 and the second term is the same as before. Hence, ψg is increasing in yg on U−

and decreasing in yg on U+.

Proof of Proposition 4. The result is obtained by differentiating (18) with respect to λ. Let

v =
(
λ(αgψg(θg) − βg), α−gθg − β−g, θg, ψg(θg)

)
and let u =

(
pg, Pg, yg, γg

)
g∈{−1,1} be the the

parameter vector. I obtain

∂

∂λ
ψλg (θg) = −

(
αgψ

λ
g (θg)− βg

)( ∂1

λαg∂1 + ∂4

)
R̃g(v). (30)

If u ∈ U−, there exists θ̂ such that this expression is negative for θg < θ̂ and positive for θg > θ̂,

while if u ∈ U+, there exists θ̂ such that this expression is positive for θg < θ̂ and negative for

θg > θ̂.

Proof of Proposition 5. I start by calculating the probability of winning of a group at the ex

ante stage. For g, it is the probability that θ−g < ψg(θg) measured with the prior distribution

on (θg, θ−g). The event can be written

|αg − 1|θg < |α−g − 1|θ−g + ΛU(β−g − βg),

where the indicator function ΛU = 1U+ − 1U− is equal to 1 when the precisions lie on U+ and

to -1 when the precisions lie on U−. This can be rewritten as

ΛU

(
(1− p−1/2

g P̄ )θg − (1− p−1/2
−g P̄ )θ−g +

√
P−g
p−g

η−g −

√
Pg
pg
ηg

)

< ΛU

(√
Πg

pg
Φ−1(γg)−

√
Π−g
p−g

Φ−1(γ−g)

)
. (31)
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According to the prior, the left hand-side of this equation is normally distributed with variance

σ2 =
Pg + P̄

pg
+
P−g + P̄

p−g
+ 2

(
P̄−1 − p−1/2

g − p−1/2
−g

)
, (32)

so that ex ante

Pr
(
gwins

)
= Φ

(
σ−1ΛU

[√
Πg

pg
Φ−1(γg)−

√
Π−g
p−g

Φ−1(γ−g)

])
. (33)

This calculation is general. With the assumption that pg = p−g = p and γg = γ−g = γ, I can

write

Pr
(
gwins

)
= Φ

ΛUΦ−1(γ)

√
Πg −

√
Π−g√

Πg + Π−g − 2p(1− 1/P̄ )− 4
√
p

 . (34)

The comparative statics results are easily derived from this expression.

Proof of Proposition 6. I prove the result for the first case K ⊂ U+. Suppose γ < 1/2 and fix

an action Pg for the group leader of −g, then the best response of the group leader of g is the

level of precision P−g (remember that a group leader chooses the precision of the information

revealed to the other group) that maximizes (34) given P−g. The expression in (34) is strictly

below 1/2 for P−g < Pg because then Π−g < Πg and Φ is evaluated at a negative point. The

expression is strictly above 1/2 for P−g > Pg. The expression seen as a function of P−g is

continuous on a compact and is therefore maximized by some P−g which must be strictly above

Pg from the preceding argument. Because the former is true for any g with any initial Pg it

implies that the only possible fixed point of the best-response dynamics is at Pg = P−g = K.

The other results are obtained by noticing that switching to either K ⊂ U− or γ > 1/2

changes the sign of the expression at which Φ(.) is evaluated in (34).

Proof of Proposition 7. I can calculate the expected participation explicitly

le = Φ
(
−ζ−1Π1/2Φ−1(γ)

)
, (35)
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where

ζ2 = p+
1(

P + P̄ −√p
)2(Π2

(
P + P̄

)
+ P

(
p2 + p

)
+ p(p+ P )2/P̄ + p2P̄ − 2p5/2

)
.

I can rewrite ζ−1Π1/2 =
√
Q(P )/R(P ) as the square root of a fraction of two polynomials in

P . In particular, this expression is always positive, and it is easy to verify that it goes to 1

when P →∞. The polynomial Q(P ) has a unique root in P , given by P =
√
p− P̄ , and R(P )

has no root in P since ζ2 > 0. Also, when P = 0, the expression is finite. Therefore it reaches

a maximum when P → ∞ and a minimum at P =
√
p − P̄ . It follows that when the cost is

low (γ < 1/2), le is maximized at P → ∞ and minimized at P =
√
p − P̄ and the maximum

expected total participation is 2(1 − γ), that is everybody participates, while the opposite is

true when the cost is high (γ > 1/2) and the maximum expected total participation is 1. When

γ = 1/2, le = Φ(0) = 1/2.
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