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Abstract

We consider a general information design problem in which the task of running a

procedure generating information for a continuation game is performed by an agent. A

moral hazard problem therefore emerges in which the principal faces a trade-off between

generating information that is persuasive in the continuation game, and efficiently in-

centivizing the agent to comply with the procedure designed. Standard concavification

techniques do not apply in this environment. We provide a general methodology to

tackle such problems, and examine the way in which moral hazard affects the optimal

procedure of the principal.
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1 Introduction

Consider a principal designing an information production procedure (an “experiment”) with

the aim of influencing subsequent decisions by a group of receivers. For example, a university

may choose a testing and grading policy to influence the job placement of its students, or the

management of a firm may choose an information acquisition procedure to improve its decision

making. In each case, the actual task of generating information is delegated to an agent:

teachers grade students on behalf of schools and universities; similarly, experts, consultants

or employees acquire information in order to help managerial decision making. Whenever

information acquisition procedures are not contractible, the agent must be incentivized in

order to follow the procedure designed by the principal. For instance, the agent might be

familiar with the procedure he has used in the past, in which case learning a new procedure

causes disutility. We seek to understand how this affects the principal’s design problem.

We propose a tractable model of the kind of principal-agent-receiver interaction described

above. The principal designs a procedure generating messages about an unknown state of the

world, as well as monetary transfers to the agent. The agent chooses between adopting the

procedure designed by the principal and sticking with a given, default, procedure. Switching

to the new procedure designed by the principal implies a cost for the agent. We assume that

the agent’s choice of procedure is not contractible. However, procedures generate direct or

indirect outputs that are contractible. The principal could for example condition transfers

on the message that is generated by the procedure used, or on the decisions receivers take

as a consequence. The point of departure of our analysis is that the contractibles are the

messages, however we show that under certain conditions this approach enables us to capture

other forms of contractibility as well.

The substantial assumption of our setup is that the procedure designed by the principal

must use as messages the “natural” language used by the default procedure. In practice,

information is often conveyed through a natural language: grading, for example, must be on

a scale from A to F , consultants must provide specific action recommendations, etc. Without

this assumption, the moral hazard problem would disappear, as ensuring that messages differ

across procedures would effectively restore their contractibility. By contrast, when procedures

share a common language the agent’s choice of procedure cannot be perfectly inferred from

the message that it generates. This constraint creates a trade-off for the principal between

designing a procedure that generates information about the state of the world so as to influence

receivers, and making the designed procedure easy to distinguish from the default one so as
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to reduce the cost of agency.

As this agency cost is not linear in the distribution of posterior beliefs induced by the

procedure, the problem of the principal cannot be solved by concavification. However, we

show how a solution may be obtained by reformulating the problem of the principal as finding

a binary splitting of the prior belief that maximizes a simple objective function made up of (a)

an “informational payoff” in the continuation game and (b) the agency cost of the procedure

designed by the principal. The greater the agent’s switching cost, the more weight the principal

attaches to (b) and, therefore, the more informational payoff the principal optimally sacrifices

in order to reduce the agency cost. For sufficiently high switching cost, the optimal procedure

is completely uninformative.

The paper is organized as follows. Section 2 presents the baseline model, and Section 3

the analysis. An example illustrating our results is presented in Section 4. The proof of the

main theorem is in Section 5. Section 6 concludes.

Related Literature. Our paper is in the information design tradition of Kamenica and

Gentzkow (2011) and belongs to a recent research program where the design of information

not only affects decisions downstream of message production, but also shapes incentives for a

third party to make non-contractible choices upstream of message production (Rosar, 2017;

Bloedel and Segal, 2018; Lipnowski, Mathevet and Wei, 2018; Perez-Richet and Skreta, 2018;

Bizzotto, Rüdiger and Vigier, 2019; Zapechelnyuk, 2019). A different kind of moral hazard

problem is considered in Boleslavsky and Kim (2019), where the distribution of the state is

affected by the unobservable effort of an agent. In our setting, the distribution of the state is

fixed, but an agent must be incentivized to run a given procedure. These features connect our

work both to Yoder (2019) and to Rappoport and Somma (2017). Our environments differ in

that we do not require the principal to be able to contract on posterior beliefs formed by the

receivers; on the other hand our model is more restrictive in terms of deviations available to

the agent. More broadly, our paper is connected to the literature exploring how to motivate

information acquisition that includes Szalay (2005), Zermeño (2011), Chade and Kovrijnykh

(2016), and Angelucci (2017), among many others.

2 Model

We consider an information design environment in which the final information of a continuation

game is determined by a principal-agent interaction (she and he, respectively). The finite set
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of states of the world is denoted Ω, with typical element ω. The common prior µ0 has

full support.1 An information production procedure (henceforth procedure for short) run

by the agent provides public information about the realized state to a group of receivers;

this group may comprise the principal, but does not include the agent. The agent privately

chooses between two procedures, ϕ and ψ. The procedure ϕ is exogenous, whereas ψ is

designed by the principal; we shall refer to ϕ as the default procedure and to ψ as the designed

procedure. Based on information generated by the procedure run by the agent, the receivers

form a posterior belief µ P ∆Ω and play a principal-preferred equilibrium action profile of

the continuation game that induces a payoff vpµq for the principal. This payoff function

summarizes all we need to know about the continuation game.2

All feasible procedures generate messages from the finite set M with typical element

m, according to probability mass functions conditional on the realized state. We assume

|M | ě |Ω| ` 1. To shorten notation, the (unconditional) probability that the default proce-

dure ϕ generates the message m will be denoted φpmq. We also define φ :“ minm φpmq and

assume, up to a redefinition of M , that φ ą 0. We can think of M as the natural language for

the problem at stake. To pursue this idea further, we allow for the possibility that messages

also have a natural meaning, captured by a compact and convex set of beliefs Mpmq that

each message m may convey, with ∆Ω “
Ť

mPM Mpmq. We can then define additional lan-

guage constraints on the principal by requiring ψ to be such that, for any m generated with

positive probability under ψ, the posterior belief µpm;ψq induced by m belongs to Mpmq.

A natural interpretation is that language constraints prevent the principal from designing

procedures that alter the customary meaning of messages. For example, whenever messages

are recommendations of equilibrium play in the continuation game language constraints could

require that procedures match messages (i.e. action recommendations) to beliefs at which the

recommended action profile is an equilibrium of the continuation game.3

The agent can run the default procedure at zero cost. Running the designed procedure

on the other hand induces disutility c ą 0. In line with the interpretation given in the

introduction, we refer to c as the agent’s switching cost. The agent’s choice of procedure is

1The analysis can be extended to the case of heterogeneous priors with full support using the transformation
in Alonso and Câmara (2016) or Laclau and Renou (2016).

2The assumption that receivers play a principal-preferred equilibrium implies that vp¨q is upper semicon-
tinuous.

3Messages might have other meanings as well. For example, the set of available messages could be rooted
in the states of the world, so that Ω Ă M . A possible language constraint could then be that the message ω
be matched to beliefs at which ω is the most likely state.
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not contractible, giving rise to moral hazard. To solve this problem, the principal can provide

the agent with incentives through a message-contingent transfer scheme t :M Ñ R`.
4

The timing is as follows. First, the principal chooses ψ and t. Second, the agent decides

whether to use ψ or ϕ. Third, the state of the world is realized, and a message is generated

according to the procedure used by the agent. Fourth, receivers play the continuation game

(after having observed the contract offered by the principal, and the message generated by the

procedure run by the agent). The principal and the agent are risk-neutral, and the equilibrium

concept is subgame perfect equilibrium.

2.1 Discussion of Modelling Assumptions

The model we propose builds on the assumption that the principal contracts on the messages

that procedures generate. However, incorporating language constraints enables us to capture

other forms of contractibility.

Contracting on actions. The principal might be able to directly contract on the actions

of the receivers, so that the agent ends up being paid based on what players actually do in

the continuation game. In our framework, denoting by A the set of action profiles in the

continuation game, this amounts to choosing M “ A, and letting Mpaq represent the set

of beliefs at which a is an equilibrium profile. Note that the contractible actions framework

requires additional assumptions if the principal is one of the receivers, as the receiver-principal

might otherwise be tempted to choose an action that is not optimal given her posterior belief

so as to reduce her payment to the agent.

Contracting on beliefs. In other applications some posterior beliefs might be indistin-

guishable from one another for contracting purposes, thereby inducing a covering t∆kuk“1,...,K

of the belief space ∆Ω, where each ∆k is a contractible region of the belief space. In our

framework, this amount to choosingM “ tmkuk“1,...,K and Mpmkq “ ∆k, @k. Rappoport and

Somma (2017) and Yoder (2019), for instance, allow posterior beliefs to be contracted upon.

4Limited liability is key to our main trade-off. Without it, it is possible to show that, for any procedure
ψ inducing a message distribution different than φ, a transfer scheme t exists ensuring that the incentive
constraint holds, the agent’s expected payoff is 0, and the principal’s expected payment is c.
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3 Analysis

This section begins by analyzing the baseline setting in which Mpmq “ ∆Ω for every m P M ,

that is, in which the only constraint imposed on the principal is such that ψ must use the

same set of messages as ϕ. We examine in the second part of this section how adding language

constraints modifies the analysis.

3.1 Baseline Setting

In the baseline setting, the problem of the principal is to solve for the optimal procedure and

transfer scheme among those that are incentive compatible for the agent. This problem yields5

V pµ0q :“ max
ψ,t

ÿ

ω,m

µ0pωqψpm|ωq
 

v
`

µpm;ψq
˘

´ tpmq
(

(P0)

s.t.
ÿ

ω,m

µ0pωqψpm|ωqtpmq ´ c ě
ÿ

m

φpmqtpmq. (IC0)

If V pµ0q is greater than the principal’s expected payoff under the default procedure, then the

principal designs a procedure ψ giving her expected payoff V pµ0q; otherwise, the principal

sticks with the default procedure.

We say that a belief distribution τ P ∆∆Ω is a splitting of µ0 (Aumann, Maschler and

Stearns, 1995) if it satisfies the Bayes plausibility condition
ř

µ τpµqµ “ µ0. The problem

(P0) of the principal is conveniently reformulated in terms of the choice of a splitting τ of µ0.
6

Let T pµq denote the set of splittings of µ supported on |M | beliefs at most, and Tvpµq the set

of v-concavifying splittings of µ supported on no more than |Ω| beliefs:

Tvpµq :“
!

τ P T pµq : | supppτq| ď |Ω|,
ÿ

µ1

τpµ1qvpµ1q “ v̂pµq
)

,

where v̂ denotes the concavification of v.7 One shows that for any µ, Tvpµq ‰ H. Lastly, let

τ :“ maxµPsupppτq τpµq denote the probability of the most likely belief under τ .

We now show that a solution of the program (P0) can be obtained by way of the following

Split-Match-Pay (henceforth SMP) construction:

5Throughout the paper a transfer scheme t is understood as satisfying limited liability of the agent.
6In the absence of agency (if c “ 0, for example) this problem reduces to the classic information design

problem of Kamenica and Gentzkow (2011).
7The concavification of vp¨q is the smallest concave function v̂p¨q such that v̂pµq ě vpµq for all µ P ∆Ω.
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1. Split: Choose a binary splitting of µ0 between a payment belief µ:, generated with

probability p ą φ, and a resplitting belief µ̂. Then resplit µ̂ according to α P Tvpµ̂q.

2. Match: Construct a corresponding procedure by matching the payment belief µ: with

a message that is least likely under ϕ, and match other beliefs to messages indifferently.

3. Pay: Pay the agent exclusively for generating the message matched to the payment

belief µ:, in such a way that the agent is indifferent between using ψ and ϕ.

The broad intuition behind the SMP construction is as follows. The agent is risk neutral, so

paying him at a single message realization at which the likelihood that he used ψ is maximal

minimizes the cost of inducing the agent to use the procedure designed by the principal. By

the same logic, the principal may reduce said cost by matching the most likely belief induced

by ψ to the least likely message of ϕ. But then, if the agent is paid at a single belief, conditional

on not reaching this belief, the principal is now free to generate information in any possible

way. It ensues that the problem of the principal can be reduced to the choice of a binary

splitting of µ0 into beliefs µ: and µ̂ solving

max
pąφ, µ:, µ̂

pvpµ:q ` p1 ´ pqv̂pµ̂q ´
“

c ` γppq
‰

(P)

s.t. pµ: ` p1 ´ pqµ̂ “ µ0, (BP)

where γppq :“
cφ

p´φ
. We refer to γp¨q as the agency cost function. This cost function is

unlike any cost function encountered in the literature on information design with costs.8 In

particular, in our setting the agency cost of a procedure is not linear in the splitting of µ0

associated with this procedure. Therefore, the principal’s problem cannot be formulated as a

concavification problem.

To any binary splitting pp, µ:, µ̂q of µ0 and any α P Tvpµ̂q such that µ: R supppαq, we

can associate a splitting τ P T pµ0q given by τpµ:q “ p and τpµq “ p1 ´ pqαpµq for all

µ P supppαq. Then, given an arbitrary collection tmµuµPsupppτq of distinct messages from M

such that φpmµ:q “ φ, we say that the pair pψ, tq is SMP-associated with pp, µ:, µ̂q if, for all

µ P supppτq,

ψpmµ|ωq “ τpµq
µpωq

µ0pωq
, (1)

8See e.g. Gentzkow and Kamenica (2014).
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µ0

µ:

µ̂

µ1 µK. . .

m P argminm φpmq m1 . . . mK

ψpm|ωq“p µ:pωq
µ0pωq

ψpm1|ωq“p1´pqαpµ1q
µ1pωq
µ0pωq ψpmK |ωq“p1´pqαpµKq

µK pωq

µ0pωq

tpmq “ c
p´φ tpm1q “ 0 tpmKq “ 0

Split

Match

Pay

pąφ

1´p

αPTvpµ̂q

Figure 1: The Split-Match-Pay construction

and

tpmµq “

#

c
p´φ

if µ “ µ:

0 otherwise.

The SMP construction is illustrated in Figure 1. We can now state our main result.

Theorem 1. There exist a binary splitting pp, µ:, µ̂q of µ0 solving (P), and a pair pψ, tq that

is SMP-associated with this splitting. Any such pψ, tq solves (P0).

We provide in Theorem 1 a general methodology for solving the principal’s design problem.

A proof of the theorem is provided in Section 5. Our goal in the rest of this section is to examine

the way in which moral hazard affects the optimal procedure of the principal. We aim to show,

more specifically, that the probability p with which the principal optimally rewards the agent

(Theorem 1) can be viewed as balancing the principal’s gain from controlling information in

the continuation game against her loss from making ψ harder to distinguish from ϕ.

As a first step, for any p P r0, 1s define the value

Ippq :“ max
τPT pµ0q

ÿ

µ

τpµqvpµq

s.t. τ ě p
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representing the highest expected continuation payoff that the principal can obtain whenever

some posterior belief must be generated with probability at least equal to p. Clearly, Ip1q “

vpµ0q, and since lowering p loosens the constraint in the program highlighted above, Ippq is a

non-increasing function of p. Moreover, said constraint is mute whenever p ď maxτPTvpµ0q τ .

Hence, Ippq “ v̂pµ0q whenever this condition holds.

We can now make precise the sense in which, at the optimum, p balances the principal’s

gain from generating persuasive information for the continuation game against her loss from

making ψ harder to distinguish from ϕ.

Proposition 1. The probability p with which the principal optimally rewards the agent max-

imizes Ipp1q ´ γpp1q over p1 P pφ, 1s.

This characterization leads to easy comparative statics, listed in the next proposition.

Intuitively, raising the agent’s switching cost c induces the principal to make a greater sacrifice

in terms of informational payoff so as to reduce the agency cost of the designed procedure ψ.

For c sufficiently large, the optimal designed procedure is completely uninformative.

Proposition 2. Let ppcq denote a selection from argmaxpąφ tIppq ´ γppqu. Then ppcq is

non-decreasing in c. Furthermore, for c sufficiently large, ppcq “ 1 and any solution of the

principal’s problem (P0) is such that ψ is uninformative.

3.2 General Setting

The analysis of the general setting, with additional language constraints, is similar to that of

the baseline setting; we therefore relegate it to the appendix and simply state the main result

here. Before doing this, we extend some definitions previously introduced. Let

Vm:pµ0q :“ max
pąφpm:q,µ:PMpm:q,µ̂

pvpµ:q ` p1 ´ pqv̂pµ̂q ´
“

c ` γm:ppq
‰

(Pm:)

s.t. pµ: ` p1 ´ pqµ̂ “ µ0,

with γm:ppq :“ cφpm:q
p´φpm:q

. To any binary splitting pp, µ:, µ̂q of µ0 such that µ: P Mpm:q and any

α P Tvpµ̂q such that µ: R supppαq, we can associate a splitting τ P T pµ0q given by τpµ:q “ p

and τpµq “ p1 ´ pqαpµq for all µ P supppαq. Then, given an arbitrary collection tmµuµPsupppτq

of distinct messages from M satisfying mµ: “ m: and µ P Mpmµq for all µ P supppτq, we say
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that the pair pψ, tq is SMP-associated with pp, µ:, µ̂q if (1) holds and

tpmµq “

#

c
p´φpm:q

if µ “ µ:

0 otherwise.

Theorem 2. Suppose that for all m P M , v is weakly concave on Mpmq, and pick m: P

argmaxm Vmpµ0q.
9 There exist a binary splitting pp, µ:, µ̂q of µ0 solving (Pm:), and a pair

pψ, tq that is SMP-associated with this splitting. Any such pψ, tq solves (P0) with additional

language constraints.

4 Example

In this section, we illustrate our results in a version of the lead example in Kamenica and

Gentzkow (2011).

The receiver is the ministry of transport, that needs to decide whether or not to build a

public transportation infrastructure. The possible states of the world are ωb and ωn. Abusing

notation slightly in this example, let µ denote the probability attached to ωb. Assume that as

long as µ ě 1{2, the ministry chooses to build. The principal on the other hand prefers building

irrespective of the state of the world. For instance, the principal could be a municipality with

a vested interest in building the infrastructure. We assume that the principal’s payoffs are

given by

vpµq “

$

&

%

0 if µ P r0, 1
2
q;

1

2
p1 ´ ηq ` µη if µ P r1

2
, 1s.

with η P p0, 1
2
q. A consultant (the agent) produces recommendations inM “ tbuild, do not buildu.

Finally, µ0 P p0, 1
4
q and we suppose that the default procedure recommends build and do not

build with equal probabilities. Hence, under the default procedure the ministry never builds.

We examine the solution of the principal’s problem as c increases from 0 to infinity, and

illustrate our results in Figure 2. At very small c, the principal behaves as in the absence

of agency, and commissions a study splitting µ0 on 0 and 1{2, inducing the recommendation

build with probability 2µ0 and the recommendation do not build with probability 1 ´ 2µ0.

9This condition is for instance automatically satisfied whenever the messages are action recommendations
and the principal is seeking to generate information so as to improve her own decision making. See Bizzotto,
Perez-Richet and Vigier (2018).
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c

1

1

2

µ0

c1 c2 c3 c4

µ:

µ̂

p

Figure 2: Example

Moreover, since 1 ´ 2µ0 ą 2µ0, the principal rewards the agent with a payment 2c
1´4µ0

for

recommending do not build.

As c crosses c1, the principal gives up building with maximum probability in order to

reduce the agency cost. Specifically, as building is more valuable to the principal in state ωb

than in state ωn, the principal now commissions a study with a slightly lower probability of

recommending build in state ωn.

At c “ c2, the principal designs a procedure that fully reveals the state of the world.10

At this point, to further reduce the agency cost the principal must give up building in state

ωb, adding η in terms of opportunity cost. So the principal waits until c “ c3 in order to

justify reducing the building probability any further. At c “ c4 the optimal procedure is

uninformative: do not build is recommended with probability 1 irrespective of the state.

Figure 2 illustrates the optimal binary splitting of µ0 into µ
: and µ̂. The optimal payment

probability p (whose graph we indicate by the solid curve) is obtained by maximizing Ippq ´
c

2p´1
, where11

Ippq “

$

’

’

’

&

’

’

’

%

µ0 if p P p1{2, 1 ´ 2µ0s;

ηµ0 ` 1

2
p1 ´ pqp1 ´ ηq if p P r1 ´ 2µ0, 1 ´ µ0s;

1

2
p1 ` ηqp1 ´ pq if p P r1 ´ µ0, 1s.

Lastly, we can show that if the switching cost is above c3, the principal then prefers to stick

10Interestingly, this shows how agency can benefit the receiver.
11For all p, the principal obtains building with probability 1 ´ p. Moreover, if p P r1 ´ 2µ0, 1 ´ µ0s the

principal obtains building with probability 1 conditional on ωb.
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with the default procedure and save the agency cost rather than implement the optimal ψ.

5 Proof of Theorem 1

Standard information design problems allow one to conveniently restrict attention to proce-

dures such that different messages induce different beliefs. In the kind of environment we

analyze, one must first check that “merging” two messages can be done without simultane-

ously increasing the expected cost for the principal of making the designed procedure incentive

compatible for the agent.

Lemma 1. If (P0) admits a solution, then it also admits a solution pψ, tq such that µpm;ψq ‰

µpm1;ψq for every m ‰ m1.

Proof: Let pψ, tq solve (P0). Suppose that there exist messagesm1 ‰ m2 such that µpm1;ψq “

µpm2;ψq. Pick labels such that φpm1q ď φpm2q. Then let ψ̃ be the procedure defined by

ψ̃pm|ωq “ ψpm|ωq whenever m R tm1,m2u, ψ̃pm1|ωq “ ψpm1|ωq `ψpm2|ωq and ψ̃pm2|ωq “ 0.

Then µpm1; ψ̃q “ µpm1;ψq “ µpm2;ψq. We also choose t̃ such that t̃pmq “ tpmq for every

m R tm1,m2u, t̃pm2q “ 0, while t̃pm1qψ̃pm1q “ tpm1qψpm1q ` tpm2qψpm2q. By construction,

pψ, tq and pψ̃, t̃q deliver the same expected payment to the agent and the same expected payoff

to the principal. Hence, to show the lemma it is sufficient to show that pψ̃, t̃q satisfies (IC0).

This is easy to check. �

To any pair pψ, tq such that µpm;ψq ‰ µpm1;ψq for every m ‰ m1 is associated a triple

pτψ, σψ, tq comprising:

(A) the splitting τψ P T pµ0q given by τψpµpm;ψqq “
ř

ω µ0pωqψpm|ωq;

(B) the injective matching function σψ : supppτψq Ñ M given by σψ
`

µpm;ψq
˘

“ m.

Conversely, any pair pτ, σq made up of a splitting τ P T pµ0q and an injective matching function

σ : supppτq Ñ M satisfies pτ, σq “ pτψ, σψq for some procedure ψ such that µpm;ψq ‰ µpm1;ψq

for every m ‰ m1.

By Lemma 1, we may now reformulate the problem of the principal in terms of the choice

of a triple pτ, σ, tq.
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Lemma 2. Consider pψ, tq such that µpm;ψq ‰ µpm1;ψq for every m ‰ m1. Then pψ, tq

solves (P0) if and only if pτψ, σψ, tq solves

max
τ,σ,t

ÿ

µPsupppτq

τpµq
 

vpµq ´ t
`

σpµq
˘(

(P1)

s.t.
ÿ

µPsupppτq

t
`

σpµq
˘ 

τpµq ´ φpσpµqq
(

ě c. (IC1)

Next, given an arbitrary τ P T pµ0q, we examine the problem of minimizing the expected

payment the principal needs to make so as to implement this splitting, that is, we solve

min
σ,t

ÿ

µPsupppτq

τpµqt
`

σpµq
˘

(CMτ )

s.t.
ÿ

µPsupppτq

t
`

σpµq
˘ 

τpµq ´ φpσpµqq
(

ě c. (ICτ )

Lemma 3. Let τ P T pµ0q, µ
: P argmaxµ τpµq, and m: P argminm φpmq. Then any pair pσ, tq

such that σpµ:q “ m: and

tpmq “

$

&

%

c
τ´φ

if m “ m:,

0 otherwise

solves (CMτ ). In particular, this program’s value function can be written as c ` Γpτq, with

Γpτq “
cφ

τ´φ
.

Proof: We proceed in two steps. The first step fixes the matching function σ, and minimizes

the cost of implementing τ given this σ. The second step optimizes over σ. Consider

Γσpτq “ min
t

ÿ

µPsupppτq

τpµqt
`

σpµq
˘

s.t.
ÿ

µPsupppτq

t
`

σpµq
˘ 

τpµq ´ φpσpµqq
(

ě c.

We can recast this program as

Γσpτq “ min
z:supppτqÑR`

ÿ

µPsupppτq

zpµq

s.t.
ÿ

µPsupppτq

ˆ

τpµq ´ φpσpµqq

τpµq

˙

zpµq ě c.
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Any solution of the latter program satisfies zpµq “ 0 for all µ R argmax

"

τpµq´φpσpµqq
τpµq

*

, i.e. for

all µ R argmin φpσpµqq
τpµq

. Moreover, defining ℓτ,σ :“ minµPsupppτq
φpσpµqq
τpµq

, either ℓτ,σ “ 1 in which

case Γσpτq is infinite, or ℓτ,σ ă 1 in which case

Γσpτq “
c

1 ´ ℓτ,σ
.

Minimizing Γσpτq over σ therefore amounts to minimizing ℓτ,σ over σ. �

Lemma 3 enables us to simplify (P1) as stated in the following lemma (the proof is straight-

forward, and therefore omitted).

Lemma 4. Suppose τ solves

max
τ

ÿ

µ

τpµqvpµq ´ rc ` Γpτqs (P2)

and pσ, tq solves the cost minimization problem (CMτ ). Then the triple pτ, σ, tq solves (P1).

The next lemma links (P2) to the program (P) introduced in Section 3.1.

Lemma 5. Suppose pp, µ:, µ̂q solves (P) and that there exists α P Tvpµ̂q with µ: R supppαq.

Let τpµ:q “ p and τpµq “ p1 ´ pqαpµq for all µ P supppαq. Then: (i) τ P T pµ0q, (ii) τ “ p,

and (iii) τ solves (P2).

Proof: Part (i) is trivial. We prove part (iii) below; the proof of part (ii) is similar, and

relegated to the appendix. Let τ be as defined in the statement of the lemma, and suppose

by way of contradiction that τ 1 P T pµ0q does better than τ for (P2). Let p1 “ τ 1, µa P

argmaxµ τ
1pµq, and µb “ µ0´p1µa

1´p1 . Then:

p1vpµaq ` p1 ´ p1qv̂pµbq ´ γpp1q ě p1vpµaq ` p1 ´ p1q
ÿ

µ‰µa

τ 1pµqvpµq

1 ´ p1
´ γpp1q

“
ÿ

µ

τ 1pµqvpµq ´ Γpτ 1q ą
ÿ

µ

τpµqvpµq ´ Γpτq

“ pvpµ:q ` p1 ´ pq
ÿ

µ‰µ:

αpµqvpµq ´ γppq

“ pvpµ:q ` p1 ´ pqv̂pµ̂q ´ γppq.

This contradicts the optimality of pp, µ:, µ̂q for program (P). �
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We are now ready to prove Theorem 1.

Proof of Theorem 1: Let pp, µ:, µ̂q solve (P), and pψ, tq be SMP-associated with this split-

ting. Then, by construction:

(i) the splitting τψ P T pµ0q satisfies τψpµ:q “ p and τψpµq “ p1´ pqαpµq for all µ P supppαq,

where α P Tvpµ̂q satisfies µ: R supppαq;

(ii) the matching function σψ : supppτψq Ñ M satisfies φ
`

σpµ:q
˘

“ φ.

We conclude from Lemma 5 that τψ solves (P2) and that µ: P argmaxµ τψpµq, and from

Lemma 3 that pσψ, tq solves the corresponding cost minimization problem. By Lemma 4, the

triple pτψ, σψ, tq therefore solves (P1). It ensues from Lemma 2 that pψ, tq solves (P0).

It now only remains to show that a binary splitting pp, µ:, µ̂q of µ0 solving (P) exists, and

that so does a pair pψ, tq that is SMP-associated with it. We relegate these steps of the proof

to the appendix. �

6 Conclusion

We proposed a tractable model of information design in which the task of acquiring information

is delegated to an agent who must be incentivized in order to follow the information acquisition

procedure designed by the principal. While our model assumes that the contractibles are the

messages that an information structure generates, this framework can in fact capture other

natural assumptions about contractibility. We provided a general methodology to tackle

such problems, and examined how moral hazard transforms the design problem faced by the

principal.
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Appendix

Omitted Step of the Proof of Lemma 5: Let τ be as defined in the statement of the

lemma. Here, we prove that that τ “ p. Suppose, by way of contradiction, that τ ą p. Define

p1 :“ τ . Let τpµaq “ p1 and µb :“
µ0´p1µa
1´p1 . Then:

p1vpµaq ` p1 ´ p1qv̂pµbq ´ rc ` γpp1qs ą p1vpµaq ` p1 ´ p1q
ÿ

µ‰µa

τpµqvpµq

1 ´ p1
´ rc ` γppqs

“
ÿ

µ

τpµqvpµq ´ rc ` γppqs

“ pvpµ:q ` p1 ´ pq
ÿ

µ‰µ:

αpµqvpµq ´ rc ` γppqs

“ pvpµ:q ` p1 ´ pqv̂pµ̂q ´ rc ` γppqs.

This contradicts the optimality of pp, µ:, µ̂q. �

Lemma 6. If pp, µ:, µ̂q solves (P) and p ă 1 then, for all α P Tvpµ̂q, we have αpµ:q “ 0.

Proof: Let pp, µ:, µ̂q solve (P), with p ă 1, and α P Tvpµ̂q. Suppose by way of contradiction

that αpµ:q ą 0. Define p1 :“ p ` p1 ´ pqαpµ:q, and µ̃ :“ µ0´p1µ:

1´p1 . Since µ0 “ pµ: ` p1 ´ pqµ̂

and
ř

µ αpµqµ “ µ̂, note that

µ̃ “
p1 ´ pq

ř

µ‰µ: αpµqµ

1 ´ p1
. (2)

Then, using (2) and 1 ´ p1 “ p1 ´ pq
`

1 ´ αpµ:q
˘

:

p1vpµ:q`p1 ´ p1qv̂pµ̃q “ pvpµ:q ` p1 ´ pqαpµ:qvpµ:q ` p1 ´ pq
`

1 ´ αpµ:q
˘

v̂pµ̃q

ě pvpµ:q ` p1 ´ pqαpµ:qvpµ:q ` p1 ´ pq
`

1 ´ αpµ:q
˘

ÿ

µ‰µ:

p1 ´ pqαpµqvpµq

1 ´ p1

“ pvpµ:q ` p1 ´ pqαpµ:qvpµ:q `
ÿ

µ‰µ:

p1 ´ pqαpµqvpµq

“ pvpµ:q ` p1 ´ pq
ÿ

µ

αpµqvpµq “ pvpµ:q ` p1 ´ pqv̂pµ̂q.

This contradicts the optimality of pp, µ:, µ̂q for program (P). �

Omitted Steps of the Proof of Theorem 1: First, we show that there exists a solution

to (P). By choosing p “ 1 in (P), we achieve the value vpµ0q ´ c´ γp1q. Furthermore v̂pµ0q is
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an upper bound for the informational payoff pvpµ:q ` p1 ´ pqv̂pµ̂q. For p sufficiently close to

φ, the agency cost is so high that the principal would not want to choose p even if she could

attain her best informational payoff by doing so. This is the case if

v̂pµ0q ´ γppq ă vpµ0q ´ γp1q,

or, equivalently, if

p ă p :“ φ `
cφ

v̂pµ0q ´ vpµ0q `
cφ

1´φ

.

Hence, if p ă 1, we can rewrite (P) as a maximization problem over the set of triples pp, µ:, µ̂q P

rp, 1s ˆ∆Ω2 that satisfy (BP). This set is compact, and the objective function in (P) is upper

semicontinuous in pp, µ:, µ̂q. We conclude that if p ă 1 then a solution to (P) exists (see, for

example, Aliprantis and Border, 2006, theorem 2.43). The only remaining case is if p ě 1. In

this case, the principal can not do better than choosing an uninformative procedure, and a

solution to (P) exists with p “ 1.

Next, we show that given pp, µ:, µ̂q solving (P) we can find a pair pψ, tq that is SMP-

associated with it. This is immediate if p “ 1. If p ă 1, all we need to do is to show the

existence of α P Tvpµ̂q with µ: R supppαq. However, by Lemma 6, in this case any α P Tvpµ̂q

satisfies αpµ:q “ 0. �

Proof of Proposition 1: Consider a solution pψ, tq of (P0) that is SMP-associated with the

binary splitting pp, µ:, µ̂q of µ0 solving (P). The splitting τψ P T pµ0q induced by the procedure

ψ satisfies τψpµ:q “ p, and τψpµq “ p1 ´ pqαpµq for all µ ‰ µ:, where α P Tvpµ̂q. Note that

τψ ě p.

Suppose by way of contradiction that we can find p̃ P pφ, 1s with Ipp̃q ´γpp̃q ą Ippq ´γppq.

Let τ 1 P T pµ0q achieve the value Ipp̃q. Then, by definition of the corresponding program,
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p1 :“ τ 1 ě p̃. Next, let µa P argmaxµ τ
1pµq, and µb :“

µ0´p1µa
1´p1 . We then have

p1vpµaq ` p1 ´ p1qv̂pµbq ´ γpp1q ě p1vpµaq ` p1 ´ p1q
ÿ

µ‰µa

τ 1pµqvpµq

1 ´ p1
´ γpp1q

“
ÿ

µ

τ 1pµqvpµq ´ γpp1q “ Ipp̃q ´ γpp1q

ě Ipp̃q ´ γpp̃q ą Ippq ´ γppq ě
ÿ

µ

τψpµqvpµq ´ γppq

“ pvpµ:q ` p1 ´ pq
ÿ

µ‰µ:

αpµqvpµq ´ γppq

“ pvpµ:q ` p1 ´ pqv̂pµ̂q ´ γppq.

This contradicts the optimality of pp, µ:, µ̂q for program (P). �

Proof of Proposition 2: The first part of the proposition is a direct consequence of the

Monotone Selection Theorem of Milgrom and Shannon (1994). For the second part, if v̂pµ0q “

vpµ0q then the result is immediate, so suppose v̂pµ0q ą vpµ0q. Then, by definition of p in the

proof of Theorem 1, we have p ě 1 whenever

c ě c “
p1 ´ φq

`

v̂pµ0q ´ vpµ0q
˘

φ2
,

and the solution of (P) must then be such that p “ 1. �

Proof of Theorem 2: Letm: P argmaxm Vmpµ0q. The existence of a binary splitting pp, µ:, µ̂q

of µ0 solving (Pm:) follows from arguments similar to those developed in the proof of The-

orem 1. We now show that given pp, µ:, µ̂q solving (Pm:) we can find a pair pψ, tq that is

SMP-associated with it. This is immediate if p “ 1. If p ă 1, all we need to do is to show

the existence of α P Tvpµ̂q with µ: R supppαq and such that, for all m P M , supppαq X Mpmq

contains at most one element. Arguments identical to those in the proof of Lemma 6 show

that any α P Tvpµ̂q satisfies µ: R supppαq. Moreover, since v is weakly concave on Mpmq,

choosing α such that supppαq XMpmq contains at most one element for all m P M is without

loss of generality.

Next, pick pp, µ:, µ̂q solving (Pm:) and a pair pψ, tq that is SMP-associated with it. Consider

an arbitrary pair pψ1, t1q satisfying (IC0) as well as the language constraints. Using arguments

similar to those in Lemma 3, we can without loss of generality assume that t1 rewards the
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agent at a single message, that we denote ma. Then, let µa :“ µpma;ψ
1q, pa :“

ř

ω ψ
1pma|ωq,

and µb :“
µ0´paµa
1´pa

. As pp, µ:, µ̂q solves (Pm:),

pvpµ:q ` p1 ´ pqv̂pµ̂q ´
“

c ` γm:ppq
‰

ě pavpµaq ` p1 ´ paqv̂pµbq ´
“

c ` γma
ppaq

‰

.

The left-hand side of this inequality is the expected payoff of the principal from choosing

pψ, tq. The expected payoff of the principal from choosing pψ1, t1q is bounded from above by

right-hand side of this inequality. �
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