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Abstract

We consider a general information design problem in which the task of producing

information is delegated to an agent who can privately choose between the procedure

designed by the principal and a default procedure. Procedures are constrained as to

which messages they use, and possibly how they may be used. The principal can incen-

tivize the agent via transfers conditioned on messages. This gives rise to a moral hazard

problem in which the principal faces a trade-off between generating information that is

persuasive in the continuation game, or generating information about the choice of the

agent so as to lower the cost of agency. We provide a general methodology to solve such

problems, and characterize an optimal procedure. We apply our results to information

acquisition and persuasion examples.
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1 Introduction

Consider a principal designing a new information production procedure with the aim of influ-

encing subsequent decisions by a group of receivers. For example, the management of a firm

may choose an information acquisition procedure to help its own decision making, a university

may choose a testing and grading policy to influence the job placement of its students, the

head of research and development at a technology firm may choose an internal communica-

tion protocol to prevent its innovations from leaking to competitors, or the head of security

at an airport may choose the screening protocol of passengers. In many cases, the task of

running the procedure is delegated to an agent: experts, consultants or employees acquire

information to help managerial decision making, teachers grade students on behalf of schools

and universities, etc. Whenever procedures are not contractible, the principal faces a moral

hazard problem. We seek to understand how this affects her optimal design.

In our model, the principal can design a new procedure generating information about an

unknown state of the world, as well as monetary transfers to the agent. The choice of the

agent is between adopting the new procedure or sticking with a default procedure. Switching

to the new procedure implies a cost for the agent. One natural interpretation of our setup is

that the principal is seeking to improve the information process in her organization; however,

because the agent is familiar with the old way of doing things, learning the new procedure

causes disutility.1

The agent’s choice of procedure may be observable, but is not contractible. However,

procedures generate contractible outputs: the messages. If the messages generated by the new

procedure were unrestricted, the moral hazard problem would disappear. In this case, ensuring

that messages differ across procedures effectively restores the contractibility of procedures. But

information is often conveyed through a natural language: grading, for example, must be on

a scale from A to F , consultants must provide a specific action recommendation, etc. When

procedures share a common language, the decision of the agent cannot be perfectly inferred

from messages. This creates a trade-off for the principal between designing a procedure that

generates information about the state of the world so as to influence receivers, and making

the new procedure easy to distinguish from the default one so as to reduce the cost of agency.

As in Kamenica and Gentzkow (2011) and much of the information design literature,

1This is reminiscent of Atkin, Chaudhry, Chaudry, Khandelwal and Verhoogen (2017), which illustrates how
misalignment of interests between management and employees can act as a barrier to technological innovation.
We consider technological innovations in information production processes and explore how incentive payment
schemes can help.
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the problem of the principal can be formulated as choosing a Bayes-plausible distribution of

posterior beliefs (or, following the terminology of Aumann, Maschler and Stearns (1995), a

splitting of the prior belief). However, in contrast to the usual approach, in our model the

matching of posterior beliefs to messages plays a central role: it determines the information

that each message conveys about the decision of the agent.

Each splitting is associated with an optimal matching of posterior beliefs to messages and

payment scheme, which together determine the agency cost of this splitting. The resulting

agency cost is not linear in the distribution of posterior beliefs. Therefore, the problem of the

principal cannot be solved by concavification. Instead, an optimal belief distribution can be

obtained by applying the following Split-Match-Pay construction:

1. Split the prior belief between a payment belief, which is the only posterior belief realiza-

tion for which the agent gets paid, and a resplitting belief. Conditional on reaching the

latter, resplit beliefs optimally so as to concavify the objective function of the principal

in the continuation game.

2. Match the payment belief with the least likely message under the default procedure, and

remaining posterior beliefs and messages in any suitable way.

3. Conditional on reaching the payment belief, pay the agent the exact amount needed to

make him ex ante indifferent between switching to the new procedure and sticking to

the default.

In effect, the problem of the principal can be reduced to the choice of a binary splitting

to maximize a simple objective function made up of (a) an informational payoff and (b) an

agency cost. Both (a) and (b) are decreasing in the probability of the payment belief under

the new procedure. The greater the switching cost of the agent, the more informational payoff

the principal optimally sacrifices in order to reduce the agency cost of the new procedure. For

sufficiently high switching cost, the optimal procedure is completely uninformative.

Our baseline model assumes a simple constraint for the principal: that the new procedure

must use the same language as the default procedure. However, the principal may face addi-

tional restrictions pertaining to the meaning of messages. For example, it is hard to imagine a

new grading procedure such that A students are on average worse than F students. Similarly,

if a message is an action recommendation, it may have to be matched with a belief at which

this action is indeed optimal for the receiver. We therefore consider language constraints that

put restrictions on the set of possible matchings of posterior beliefs to messages. We provide a
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natural class of language constraints to which our approach can be extended, and characterize

an optimal procedure under such constraints. We also argue that such language constraints

allow us to use our framework to capture new assumptions about contractibility. Namely, we

can reformulate any setting in which contracts can be signed on either the actions taken by

receivers in the continuation game, or subsets of beliefs held by receivers in the continuation

game.

An important special case of our optimal design problem is the information acquisition

case in which the principal is seeking to generate information to improve her own decision

making. In this case, we show that the problem of the principal can be recast as finding the

action minimizing a family of increasing and convex functions representing the informational

loss to the principal from choosing one action with probability at least equal to the probability

with which the agent must be rewarded in order to switch to the new procedure. When this

payment action is invariant as a function of the probability with which the agent is rewarded,

then increasing the agent’s switching cost induces the principal to reduce, in Blackwell’s sense,

the informativeness of the new procedure.

We consider two main extensions of the baseline model. In the first extension, we examine

cases where the agent can choose among several default procedures. In the second extension,

we allow the agent’s switching cost to depend on the nature of the new procedure through a

posterior based cost function.

The paper is organized as follows. The related literature is discussed below. A simple

example is given in Section 2. Section 3 presents the baseline model. Section 4 contains

the main analysis. Section 5 explores the information acquisition case, and extensions are

considered in Section 6. Section 7 concludes.

Related Literature. This paper is in the information design tradition of Kamenica and

Gentzkow (2011).2 Within this literature, our study is broadly related to a recent stream of

papers that study information design with moral hazard3, in which the design of information

not only affects decisions downstream of message production, but also shapes incentives for a

third party to make non-contractible choices upstream of message production that may either

affect the distribution of states of the world as in Boleslavsky and Kim (2018), the generation

of information through endogenous participation as in Rosar (2017), falsification as in Perez-

2See Bergemann and Morris (2019) and Kamenica (2018) for reviews of the information design literature.
3In a different but related vein, Georgiadis and Szentes (2018) study optimal monitoring design in a classical

moral hazard problem.
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Richet and Skreta (2018), further disclosure as in Bizzotto, Rüdiger and Vigier (2019) or

Terstiege and Wasser (2019), its communication as in Lipnowski, Ravid and Shishkin (2018b),

or its acquisition by the receiver as in Bloedel and Segal (2018) or Lipnowski, Mathevet and

Wei (2018a). In all these models, transfers are not available, the only lever of the principal is

information and the agent that creates the moral hazard problem has stakes in the downstream

decisions. By contrast, we consider a problem with both transfers and information design,

and where the agent cares about his own choices and the transfers he receives, but not about

downstream decisions. Our paper is closest to Rappoport and Somma (2017) and Yoder

(2019), whose approach shares these features. Like us, they assume that information structures

are not contractible. However, while we assume that messages only are contractible, in their

models posterior beliefs are directly contractible. Our setting and theirs provide contrasting

insights and views. For instance, in ours, asymmetric distributions of posterior beliefs tend

to lower the agency cost of the principal by helping her distinguish the new procedure from

the default one. By contrast in their setting asymmetric distributions tend to be bad for the

principal. The relationship between the two approaches is discussed further in Section 4.

Our motivation connects this paper to the literature exploring how to motivate information

acquisition without transfers in various contexts (Dewatripont and Tirole, 1999; Li, 2001;

Szalay, 2005; Angelucci, 2017). A more closely related literature explores transfers as a way

to incentivize information acquisition. Chade and Kovrijnykh (2016) study a dynamic moral

hazard environment in which the agent’s effort affects the informativeness of the message she

acquires on behalf of the principal. As in this paper, message realizations are contractible

but effort (and the resulting information structure) is not. They show that positive effort

cannot always be sustained, and that in some cases bad news get rewarded. Zermeño (2011)

considers a static environment in which the principal seeks to incentivize effort in information

acquisition, with more flexibility in the class of information structures and contractibles, and

shows that menus can be valuable in such environments. In both cases, by contrast with this

paper, the scope for information design by the principal is limited to choosing which effort level

to implement, which determines the resulting information structure within a restricted class.

Furthermore, they assume that the principal can commit to and contract on her decisions.

Carroll (2019) adds uncertainty of the principal about the information acquisition technology

of the agent to these models, and examines robust contracts that maximize against the worst

case scenario.
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2 A Simple Example

The ministry of transport (the principal) is considering building a public transportation in-

frastructure. There are two equally likely states of the world, ωb and ωn. The principal would

like to build in state ωb and not to build in state ωn. To help with the decision process,

the ministry employs a consultant (the agent) to collect data and run a model producing

recommendations. In the past, the agent has been using a well known model (the default

procedure). However, this procedure generates little information about the state of the world:

in both states, the correct recommendation is made with some identical probability slightly

above 1/2. The principal has the opportunity to upgrade from the default procedure. Switch-

ing to a new procedure will cost c ą 0 to the agent. The principal has no means of verifying

that the agent uses the new procedure. The only way to make sure that he uses the new

procedure is by committing to bonus payments (transfers) contingent on his recommendation.

If procedures are contractible (and c is sufficiently small), the principal designs the fully

informative procedure which recommends building with probability 1 in state ωb and not

building with probability 1 in state ωn. If recommendations are contractible but procedures

are not, however, the principal cannot induce the agent to use the fully informative procedure.

Indeed, since each recommendation is equally likely under both the fully informative and the

default procedure, the agent cannot be rewarded for selecting the new, fully informative,

procedure.

When designing the new procedure, the principal must strike a balance between being

informed about the state of the world, to increase her informational payoff, and being informed

about the decision of the agent, to lower the agency cost of inducing the agent to switch to

the new procedure. To lower the agency cost, the principal must bias the procedure towards

one recommendation which she will use to reward the agent. Hence, an optimal procedure

recommends building with probability 1 in state ωb, and with probability x ą 0 in state ωn,

resulting in probability p “ 1`x
2

of the recommendation build.4 With payoffs 1 for making

the right decision and 0 otherwise, the informational payoff the principal derives from such a

procedure is

Prpωbq ` Prpωnqp1 ´ xq “
3

2
´ p.

To induce the agent to select the new procedure, the principal pays him an amount tb for

recommending to build (since this is the recommendation for which the agent is most likely

4The other optimal procedure is the symmetric one.
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to have complied). Moreover, to minimize the agency cost, the principal chooses tb so as to

make the agent indifferent, that is,

ptb “
1

2
tb ´ c.

Hence, the principal optimally chooses p to maximize

ˆ

3

2
´ p

˙

looomooon

informational payoff

´

ˆ

c

2p ´ 1

˙

loooomoooon

agency cost

. (‹q

Larger values of p (higher biases) reduce the information about the state of the world, causing

a loss for the principal from making wrong decisions, but also lower the agency cost by making

the recommendation to build more indicative of compliance by the agent. The greater the

switching cost c of the agent, the more informational payoff the principal optimally sacrifices

in order to reduce the agency cost of the new procedure.

3 Model

We consider an information design environment in which the final information of a continuation

game is determined by a principal-agent interaction (she and he, respectively). The finite set

of states of the world is denoted Ω, with typical element ω. A procedure run by the agent

provides public information about the realized state to a group of N ě 1 receivers possibly

including the principal, but not the agent. All players share a common prior µ0 P ∆Ω with

full support.5 Based on information generated by the procedure, the receivers form a belief

µ P ∆Ω and play a principal-preferred equilibrium action profile of the continuation game that

induces a payoff vpµq for the principal. This payoff function summarizes all we need to know

about the continuation game to analyze the design problem with agency. The assumption

that receivers play a principal-preferred equilibrium implies that vp¨q is upper semicontinuous.

The principal can design a new procedure. In doing so, she is constrained by an exist-

ing default procedure, which generates messages in a finite set M (with typical element m)

according to conditional distributions
 

ϕp¨|ωq
(

ωPΩ
. Let φpmq “

ř

ω µ0pωqϕpm|ωq be the prob-

ability of message m under the default procedure, and φ :“ minm φpmq. We take M to be

the support of φp¨q, thus φ ą 0. The new procedure designed by the principal must use the

5The analysis can be extended to the case of heterogeneous priors with full support using the transformation
in Alonso and Câmara (2016) or Laclau and Renou (2016).
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same language as the default, that is the same set of messages M .6 We let ψ denote this new

procedure, which consists of conditional message distributions
 

ψp¨|ωq
(

ωPΩ
. We assume a rich

language, in the sense that |M | ě |Ω| ` 1. If A is the set of all principal optimal equilibrium

profiles (for all public beliefs µ P ∆Ω) in the continuation game, and it is finite, then this

condition can be replaced by |M | ě mint|A|, |Ω| ` 1u.

The agent decides whether to use the default or the new procedure. He is indifferent

about the outcome of the continuation game, and only cares about monetary incentives and

the cost of running procedures. To keep things simple in the baseline model, we assume that

the relative cost of using the new procedure, c ą 0, is independent of the two procedures.7

The agent’s choice of procedure is not contractible by the principal, giving rise to moral

hazard. To solve this problem, the principal can provide the agent with incentives through a

message-contingent payment scheme t : M Ñ R`, which incorporates limited liability of the

agent.8

The timing of the game is as follows. First, the principal chooses a procedure ψ and

commits to a payment scheme t. Second, the agent chooses between the default and the new

procedure. Third, the state of the world is realized, and a message is generated according

to the procedure selected by the agent. Fourth, receivers play the continuation game after

having observed the contract offered by the principal (so they can infer the procedure the

agent must have used), and the message generated by the procedure. The principal and the

agent are risk-neutral, and the equilibrium concept is subgame perfect equilibrium.

The particular case of information acquisition will be of specific interest. In this case,

the single receiver is (or has aligned preferences with) the principal, who seeks to obtain

information so as to solve a decision problem. Then, vp¨q is a convex function, and in the

absence of agency the optimal procedure of the principal is fully informative.

6We consider additional language constraints in Section 4.3.
7There are many ways in which the switching cost could depend on the default and proposed procedures.

In Section 6, we consider the case where the cost of a procedure is given by an expected uncertainty reduction
measure as in Gentzkow and Kamenica (2014).

8Limited liability is key to our main trade-off. Without it, it is possible to show that, for any procedure
ψ inducing a message distribution different than φ, a payment scheme t exists ensuring that the incentive
constraint holds, the agent’s expected payoff is 0, and the principal’s expected cost is c.
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4 Analysis

The problem of the principal is to solve for the optimal procedure and payment scheme that

are incentive compatible for the agent, that is,

V pµ0q :“ max
ψ,t

ÿ

ω,m

µ0pωqψpm|ωq
 

v
`

µpm;ψq
˘

´ tpmq
(

(P0)

s.t.
ÿ

ω,m

µ0pωqψpm|ωqtpmq ´ c ě
ÿ

m

φpmqtpmq, (IC0)

where µpm;ψq P ∆Ω is the Bayes-updated belief of receivers after observing message m, and

knowing that m was generated according to ψ. The principal can then compare the value

V pµ0q of this program to her expected payoff under the default procedure to decide whether

it is worth to innovate.

4.1 Benchmark: No Agency

In the absence of agency (if c “ 0 for example), our problem is exactly that of Kamenica and

Gentzkow (2011). As a benchmark, and in order to introduce some useful notation, we recall

some of their main results: (i) one can focus on the distribution of beliefs τ P ∆∆Ω that a

procedure generates; (ii) this belief distribution is a splitting of µ0, that is, it satisfies the Bayes

plausibility condition
ř

µPsupppτq τpµqµ “ µ0 (Aumann et al., 1995; Kamenica and Gentzkow,

2011); (iii) optimal splittings concavify vp¨q at µ0, that is, defining v̂p¨q as the concavification9

of vp¨q, the value function of the principal is v̂pµ0q; (iv) there exists an optimal (v-concavifying)

splitting τ such that | supppτq| ď |Ω|.

We will use the notation T pµq for the set of splittings of µ supported on |M | beliefs at

most, and Tvpµq for the set of v-concavifying splittings of µ supported on no more than |Ω|

beliefs, that is,

Tvpµq :“
!

τ P T pµq : | supppτq| ď |Ω|,
ÿ

µ1Psupppτq

τpµ1qvpµ1q “ v̂pµq
)

.

Point (iv) ensures that Tvpµq is non-empty for all µ. Lastly, given a splitting τ P T pµ0q we let

τ :“ maxµPsupppτq τpµq denote the probability of the most likely belief under τ .

9The concavification of vp¨q is the smallest concave function v̂p¨q such that v̂pµq ě vpµq for all µ P ∆Ω.
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4.2 An Optimal Procedure

Our main theorem shows that an optimal design can be obtained through the following Split-

Match-Pay (henceforth SMP) construction:

1. Split: Choose a binary splitting of µ0 between a payment belief µ:, generated with

probability p ą φ, and a resplitting belief µ̂. Then, conditional on reaching µ̂, resplit

according to α P Tvpµ̂q.

2. Match: Construct a corresponding procedure by matching the payment belief µ: with

a message that is least likely under the default procedure, and match other beliefs to

messages indifferently.

3. Pay: Reward the agent exclusively for generating the message matched to the payment

belief, and choose this payment so as to make the agent indifferent between the new

procedure and the default.

The simple intuition behind the SMP construction is that, since the agent is risk-neutral,

paying the agent at a single message realization at which the likelihood that he has used the

new procedure is maximal minimizes the cost of agency. The principal thus matches the most

likely belief under the new procedure to the least likely message under the default. This, in

turn, effectively reduces the problem of the principal to choosing a binary splitting that solves

max
pąφ,µ:,µ̂

pvpµ:q ` p1 ´ pqv̂pµ̂q ´ rc ` γppqs (P)

s.t. pµ: ` p1 ´ pqµ̂ “ µ0, (BP)

where γppq :“
cφ

p´φ
. The term inside the square bracket represents the expected cost to the

principal of inducing the agent to use the new procedure having set transfers and matched

beliefs to messages optimally. We refer to γp¨q as the agency cost function. This function

is unlike any cost function encountered in the literature on information design with costs:10

it is a decreasing and convex function of the probability with which the agent is rewarded.

In particular, as it is not linear in the splitting, the problem of the principal is not a pure

concavification problem.

To any binary splitting pp, µ:, µ̂q solving (P), the SMP construction associates (at least)

(a) one splitting τ P T pµ0q, (b) one procedure ψ that generates this splitting, and (c) one

10See e.g. Gentzkow and Kamenica (2014).
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µ0

µ:

µ̂

µ1 µK. . .

m P argminm φpmq m1 . . . mK

ψpm|ωq“p µ
:pωq
µ0pωq

ψpm1|ωq“p1´pqαpµ1q
µ1pωq
µ0pωq ψpmK |ωq“p1´pqαpµKq

µK pωq

µ0pωq

tpmq “ c
p´φ tpm1q “ 0 tpmKq “ 0

Split

Match

Pay

pąφ

1´p

αPTvpµ̂q

Figure 1: The Split-Match-Pay construction

transfer scheme t that enforces it, given by:

τpµ:q “ p,

τpµq “ p1 ´ pqαpµq,

for all µ P supppαq, for some α P Tvpµ̂q,

ψpmµ|ωq “ τpµq
µpωq

µ0pωq
,

and

tpmµq “

#

c
p´φ

if µ “ µ:

0 otherwise
,

where tmµuµPsupppτq is any collection of distinct messages from M satisfying φpmµ:q “ φ. The

SMP construction is illustrated in Figure 1.

We can now state our first main result. We provide the essential steps of the proof of this

theorem as well as additional characterization results in Subsection 4.5.

Theorem 1. There exists a binary splitting pp, µ:, µ̂q that solves (P). Let pψ, tq denote a

procedure and payment scheme pair that is SMP-associated to this solution. Then pψ, tq solves
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(P0).

To further highlight the persuasion/agency trade-off faced by the principal, we show below

that the payment probability p of the optimal binary splitting balances the gain from generat-

ing persuasive information about the realized state for the continuation game, against the loss

(in terms of agency cost) resulting from making the new procedure harder to distinguish from

the default. We define to this end a constrained optimal informational payoff of the principal

in the continuation game,

Ippq :“ max
τPT pµ0q

ÿ

µPsupppτq

τpµqvpµq

s.t. τ ě p,

which is the highest expected continuation payoff that the principal can obtain from a splitting

in which at least one posterior belief is generated with ex ante probability at least p. We

henceforth refer to the value Ippq of the above program as the principal’s informational payoff.

To understand the constraint in this program, note that, if a splitting τ is SMP-associated to

a solution pp, µ:, µ̂q of (P), then µ: must be most likely under τ , that is:

Lemma 1. Any splitting τ P T pµ0q that is SMP-associated to a solution pp, µ:, µ̂q of (P)

satisfies τ “ p.

This result shows that, at the optimum, the single message at which the agent receives a

positive transfer is ex ante most likely.11 We next list the general properties of the informa-

tional payoff function Ip¨q.

Lemma 2. The informational payoff function, Ip¨q, is non-increasing in p, and satisfies Ippq “

v̂pµ0q if p ď maxτPTvpµ0q τ , and Ip1q “ vpµ0q.

Lowering p loosens the constraint in the program that defines Ippq, and thus weakly in-

creases Ippq. Moreover, the constraint is mute whenever p ď maxτPTvpµ0q τ ; so whenever this

condition holds the principal’s informational payoff is equal to the value v̂pµ0q of the principal’s

problem without agency. That Ip1q “ vpµ0q follows immediately from Bayes plausibility.

11The intuition is again that, by making the payment belief most likely under the new procedure (and
matching it with the least likely message in the default procedure through the SMP construction), the principal
makes it most likely that the agent has complied when she pays him, and thus minimizes the cost of agency.
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The following proposition shows that, at the optimum, the principal chooses the payment

probability p so as to balance the gain from lowering γppq against the loss from lowering Ippq,

as illustrated by (‹) in the example of Section 2.

Proposition 1. A binary splitting pp, µ:, µ̂q solves (P) if and only if p solves

max
p1ąφ

Ipp1q ´ γpp1q.

This characterization leads to easy comparative statics, listed in the next proposition.

Intuitively, an increase of the switching cost c induces the principal to sacrifice more informa-

tional payoff in order to incentivize the agent to use the new procedure, eventually leading to

a new procedure that is uninformative (and to which the principal might prefer the default

procedure).

Proposition 2. Let ppcq be a selection from argmaxpąφ tIppq ´ γppqu. Then ppcq is non-

decreasing in c. Furthermore, for c sufficiently large, ppcq “ 1 and any optimal procedure is

uninformative.

Since the principal and the receivers may have conflicting interests in the continuation

game, information might in general hurt the principal in the benchmark information design

problem without agency. This is the case whenever v̂pµ0q “ vpµ0q, and in particular if vp¨q is

concave. Then, we show next that any optimal new procedure is uninformative. Note that if

the switching cost is too high, the principal may nevertheless have to stick with an informative

default procedure.

By contrast, when v is convex, the principal always prefers more information in the bench-

mark problem. This is in particular the case in the information acquisition problem that we

study in more detail in Section 5. Then, we show that the optimal resplitting belief can be

picked on the boundary B∆Ω of the set of beliefs. This means that an observer unable to

see the message generated by the procedure, but knowing that the agent has not been paid,

could rule out some states of the world. In this case, when the optimal new procedure is

neither fully informative or uninformative (which can be the case as our examples in section

5 illustrate), the principal is certain about the state of the world whenever the agent does not

get paid, but uncertain whenever the agent gets paid.

Proposition 3. If v̂pµ0q “ vpµ0q, then an uninformative procedure is optimal. If v is convex,

either an uninformative procedure is optimal or there exists a solution of (P) such that µ̂ P

B∆Ω. Furthermore, if v is strictly convex, then this is true of any solution of (P).
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We next illustrate our results with a slightly modified version of the lead example in

Kamenica and Gentzkow (2011).12

Example 1. Consider the following variant on the example from Section 2. As in that ex-

ample, the receiver is the ministry of transport, that needs to decide whether or not to build

a public transportation infrastructure. A consultant (the agent) produces recommendations in

M “ tbuild, do not buildu. The possible states of the world are ωb and ωn. Abusing notation

slightly, in this binary state example, beliefs µ will denote the probability attached to ωb. As

long as µ ě 1{2, the ministry chooses building. The principal is a municipality, with a vested

interest in building the infrastructure. She prefers building irrespective of the state of the

world, but building yields an additional payoff η P p0, 1q if the state of the world is ωb. Thus,

vpµq “

$

&

%

0 if µ P r0, 1
2
q;

1
2
p1 ´ ηq ` µη if µ P r1

2
, 1s.

We assume µ0 P p0, 1
4
q, and that the default procedure recommends build and do not build

with equal probabilities. Hence, under the default procedure the ministry never builds. We

study the optimal new procedure as c increases from 0 to infinity, and illustrate our results in

Figure 2.

At very small c, the principal behaves as in the absence of agency, and commissions a

study splitting µ0 on 0 and 1{2, inducing the recommendation build with probability 2µ0 and

the recommendation do not build with probability 1´ 2µ0. Moreover, since 1´ 2µ0 ą 2µ0, the

principal rewards the agent with transfer 2c
1´4µ0

for recommending do not build.

As c crosses c1, the principal gives up building with maximum probability in order to reduce

agency cost. Specifically, as building is more valuable to the principal in state ωb than in state

ωn, the principal now commissions a study with a slightly lower probability of recommending

build in state ωn.

When c reaches c2, the principal selects a procedure that fully reveals the state of the world.

Interestingly, this shows how agency can benefit the receiver in the usual Bayesian persuasion

problem. At this point, to further reduce the agency cost the principal must give up building in

state ωb, adding η for the principal in terms of opportunity cost. So the principal waits until

c “ c3 in order to justify reducing the building probability any further. At c “ c4 the optimal

procedure is uninformative: do not build is recommended with probability 1 irrespective of the

12Details of all calculations pertaining to the examples are available from the authors upon request.
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state.

c

1

1
2

µ0

c1 c2 c3 c4

µ: µ̂ p

(A)

p
1 ´ 2µ0 1 ´ µ0 1

Ippq γppq

(B)

Figure 2: Example 1

Panel A of Figure 2, illustrates the optimal binary splitting. Note that there is no resplitting

in this case. The optimal payment probability p (whose graph we indicate by the solid curve

in Figure 2, panel A) is obtained by maximizing Ippq ´ c
2p´1

, where13

Ippq “

$

’

’

’

&

’

’

’

%

µ0 if p P p1{2, 1 ´ 2µ0s;

ηµ0 ` 1
2
p1 ´ pqp1 ´ ηq if p P r1 ´ 2µ0, 1 ´ µ0s;

1
2
p1 ` ηqp1 ´ pq if p P r1 ´ µ0, 1s.

Figure 2, panel B, illustrates this informational payoff function as well as the agency cost

function γppq “ c
2p´1

.

To conclude this example, note that the principal may prefer to stick with the default pro-

cedure and save the agency cost rather than implement the optimal new procedure. In fact, we

can show that, if the switching cost is above c3, the principal prefers the uninformative default

procedure to the optimal new procedure for all parameter values. There exist parameter values

such that the fully informative procedure is optimal and preferred to the default procedure.

13For all p, the principal obtains building with probability 1 ´ p. Moreover, if p P r1 ´ 2µ0, 1 ´ µ0s the
principal obtains building with probability 1 conditional on ωb.
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4.3 Language Constraints

In this section, we pursue further the idea that information must be conveyed in a natural

language that may constrain innovation in information generation procedures, and give rise

to agency costs. So far, we have only constrained new procedures to use the same language as

the default, and we have shown how agency then leads the principal to optimally match the

most likely belief under the new procedure with the least likely message under the default.

However, this may require altering the “meaning” of messages in the new procedure. In our

public transportation example of Section 2, it may for instance lead the principal to optimally

associate a belief at which building is optimal with a do not build recommendation. To prevent

such inversions of meaning, we here impose additional constraints on how the natural language

is used by the new procedure.

One way to do this is by thinking of messages as recommendations of equilibrium play in

the continuation game. That is, if A is the set of equilibrium action profiles in the continuation

game, we may assume that the languageM is a subset of A, and that all procedures, including

the default, can only match message a to beliefs at which a is an equilibrium profile.

Another way is by thinking of the natural language as rooted in the states of the world,

so that M “ Ω. A natural language constraint would then be to require that the message ω

be matched to beliefs µ at which µpωq ě µpω1q for all ω1 ‰ ω.

We generalize both approaches by considering language constraints such that a message

m can only be used to convey (matched to) beliefs in a subset Λpmq Ď ∆Ω, and refer to

Λ : M Ñ ∆Ω as the meaning correspondence. We assume that it satisfies the following

properties:14

(LC1) Λpmq is a convex set;

(LC2) ∆Ω “
Ť

mPM Λpmq;

(LC3) v is weakly concave on each Λpmq.

The problem of the principal is then to solve (P0) with the additional set of constraints

given by µpm;ψq P Λpmq, for each m P M generated with positive probability under ψ. We

show that an optimal procedure can be obtained through the following Constrained Split-

Match-Pay construction (henceforth CSMP):

14It is easy to check that the recommendation approach we suggested as motivation automatically satisfies
all assumptions. The state approach automatically satisfies (LC1) and (LC2), but (LC3) must be checked.
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1. Split: Choose a binary splitting of µ0 between a payment belief µ:, generated with

probability p ą φpm:q for some m: such that µ: P Λpm:q, and a resplitting belief µ̂.

Then, conditional on reaching µ̂, resplit according to α P Tvpµ̂q.

2. Match: Construct a corresponding procedure by matching the payment belief µ: with

m:, and other beliefs with messages so as to satisfy the language constraints.

3. Pay: Construct the payment scheme so as to pay the agent exclusively for generating

the message m:, and choose the corresponding transfer so as to make him indifferent

between the new procedure and the default.

Contrary to the SMP construction, the CSMP construction cannot be applied to all binary

splittings pp, µ:, µ̂q, as the matching step may fail. Indeed, while condition (LC3) ensures that

α can be chosen so that a distinct messagemµ that satisfies the language constraint µ P Λpmµq

can be matched with each µ P supppαq, the CSMP construction requires the message m: to

be distinct from all messages tmµuµPsupppαq. A splitting that would not satisfy this, however,

would not be optimal as the principal could, at no informational cost, merge the payment

belief and the belief µ P supppαq such that mµ “ m: into a new payment belief that would

occur with higher probability and thus lower agency cost.

Therefore, the problem of the principal can be reduced to solving the following family of

programs parameterized by the payment message m::

Vm:pµ0q :“ max
pąφpm:q,µ:PΛpmq,µ̂

pvpµ:q ` p1 ´ pqv̂pµ̂q ´ rc ` γm:ppqs (Pm:)

s.t. pµ: ` p1 ´ pqµ̂ “ µ0,

where γm:ppq :“ cφpm:q
p´φpm:q

.

Even though (Pm:) ignores all language constraints but the one bearing on the payment

belief, µ: P Λpm:q, the following lemma ensures that we can apply the CSMP construction to

its solution to generate a procedure that satisfies all language constraints

Lemma 3. Let pp, µ:, µ̂q be a binary splitting that solves (Pm:). Then, it is possible to find a

payment message m:, a splitting α P Tvpµ̂q, and a collection of messages tmµuµPsupppαq distinct

from m: such that the CSMP construction yields a splitting τ P T pµ0q, a procedure ψ that

generates this splitting and satisfies all language constraints, and a transfer scheme t that

enforces this procedure, all defined by the following equations:
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(i) τpµ:q “ p and τpµq “ p1 ´ pqαpµq for all µ ‰ µ:,

(ii) ψpm:|ωq “ p
µ:pωq
µ0pωq

, and ψpmµ|ωq “ τpµq µpωq
µ0pωq

for all µ ‰ µ:,

(iii) tpm:q “ c
p´φpm:q

, and tpmq “ 0 for all m ‰ m:.

We can now state our second main result:

Theorem 2. Let m˚ P argmaxm Vmpµ0q, and let pp, µ:, µ̂q be a binary splitting that solves

(Pm˚). Then, applying the CSMP construction to pp, µ:, µ̂q yields a procedure and transfer

scheme pair pψ, tq that solves the principal’s problem with language constraints.

The idea is straightforward. First, find the best possible procedure with single payment

messagem:, for eachm: P M . In each subproblem, the agency cost function is given by γm:p¨q,

and the principal is constrained to pick µ: in Λpm:q. Then, compare across all messages in M

and select the solution corresponding to the payment message inducing the largest payoff for

the principal.

Language constraints may of course drastically affect the optimal procedure of the princi-

pal. The next example provides an illustration.

Example 2. We revisit a version of the example of Section 2. The states of the world are ωb

and ωn, the message set M “ tbuild, do not buildu, and µ denotes the probability attached to

ωb. The principal obtains payoff 1 for making the right decision, and -1 otherwise, thus

vpµq “

$

&

%

1 ´ 2µ if µ ă 1{2

2µ ´ 1 if µ ě 1{2
.

We assume µ0 “ 1
3
and that the default procedure recommends build with probability µ0 and

do not build with probability 1´µ0. The language constraint is that an action can only be rec-

ommended for beliefs at which it is optimal, that is Λpbuildq “ r1{2, 1s and Λpdo not buildq “

r0, 1{2s.

Figure 3, panel A, illustrates the solution of the principal’s unconstrained problem (P0);

panel B illustrates the solution of the problem with language constraints. In the unconstrained

problem, since the prior is pessimistic, the principal intuitively uses the pessimistic posterior

(which is also the most likely) for payment, and matches this belief with the build message,

which is the least likely under the default procedure. With language constraints however, the

cost of inducing the same distribution of posterior beliefs increases sharply as it is no longer
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possible to match a pessimistic belief with a build message. Instead, it is optimal to pay the

agent at the optimistic posterior.

Hence, whereas the unconstrained optimal procedure is such that the ministry never builds

in state ωn, with language constraints the ministry builds with probability 1 in state ωb and

with small but positive probability in state ωn. Furthermore, while full information is optimal

for small switching costs in the unconstrained case, it is never so under language constraints.

c
(A) Unconstrained

c
(B) Constrained

0

1

1
2

µ: µ̂ p

Figure 3: Example 2

We show in Appendix B.1 that language constraints may overturn the first result of Propo-

sition 3, that is, the optimal procedure may be informative even in cases where, in the absence

of an agency problem, more information actually hurts the principal.15

To conclude this section, note that there are other ways to introduce language constraints.

We have introduced language constraints by giving each message an absolute meaning, em-

bodied as a region of the belief space. In the grading case, for example, we may want to

consider a relative meaning. In this case, we could think of the underlying state of the world

as a unidimensional student skill, and assume that the natural language is an ordered message

space pM,ąq. The language constraint would then require that posterior beliefs generated

by a splitting τ could only be matched with a collection of messages tmµuµPsupppτq such that

mµ ą mµ1 whenever Eµω ą Eµ1ω.

15See Example 5 in the appendix.
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4.4 A Discussion of Contractibility

This paper builds on the idea that the only contractible outputs of information production

procedures are messages. This idea has bite when there is a natural language that all proce-

dures must use. But then it is natural to impose additional language constraints that restrict

the use of messages in the natural language, as we did in the preceding section. Next, we

argue that our framework with language constraints can encompass other natural assumptions

about contractibles.

Contracting on actions. A natural assumption in the Principal-Agent-Receiver(s) type of

interaction we consider, would be to allow the principal to directly contract on the actions of

the receivers. This is most natural in the persuasion context. In the case of Example 1, the

municipality could then pay the consultant different amounts depending on the final decision

of the ministry. However, it is easy to see that this assumption is equivalent to assuming, in

our framework, that the natural language M is the set A of (principal preferred) equilibrium

action profiles in the continuation game, and that language constraints are such that each

message a P A, can only be matched to beliefs in the set Λpaq of beliefs at which a is an

equilibrium action profile. This was in fact our motivating form of language constraints. Note

that the contractible actions framework requires additional assumptions in the information

acquisition case, as the receiver-principal might otherwise be tempted to choose an action that

is not optimal given her posterior belief so as to avoid paying the agent.

Contracting on beliefs. In a similarly motivated paper, Rappoport and Somma (2017)

assume that it is possible to contract directly on posterior beliefs. While they convincingly

argue that this might be reasonable in some cases, another take on this could be that, some

posterior beliefs cannot be distinguished from one another for contracting purposes. This my-

opia leads to a covering t∆kuk“1,...,K of the belief space, where each ∆k is a contractible region

of this space. This is equivalent to assuming, in our formulation, that each ∆k corresponds to

a distinct message mk such that Λpmkq “ ∆k, and M “ tmkuk“1,...,K .

4.5 Reducing the Principal’s Problem: a Proof of Theorem 1

In this section, we delineate the steps of the proof of Theorem 1. We first establish that the

principal cannot gain by duplicating beliefs.
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Lemma 4. If (P0) admits a solution, then it also admits a solution pψ, tq such that µpm;ψq ‰

µpm1;ψq for every m ‰ m1.

We therefore focus on procedures such that messages generated with positive probability

induce distinct beliefs. Such procedures can be fully described by the combination of a Bayes-

plausible belief distribution τ P T pµ0q, and an injective matching function σ : supppτq Ñ M

that assigns a message to each belief induced by τ . Conversely, from a pair pτ, σq we recover a

procedure, that we denote ψτ,σ, by letting ψτ,σ
`

σpµq|ω
˘

“ µpωq
µ0pωq

τpµq, for all µ P supppτq, and

ψτ,σpm|ωq “ 0, for all m P M r σ
`

supppτq
˘

. The program (P0) can now be replaced by:

max
τPT pµ0q,σ,
t:MÑR`

ÿ

µPsupppτq

τpµq
 

vpµq ´ t
`

σpµq
˘(

(P1)

s.t.
ÿ

µPsupppτq

t
`

σpµq
˘ 

τpµq ´ φpσpµqq
(

ě c. (IC1)

Lemma 5. If pτ, σ, tq solves (P1), then the pair pψτ,σ, tq solves (P0). Furthermore, the value

function of (P1) equals V pµ0q.

Next we consider the problem of minimizing the expected payment the principal needs to

make so as to guarantee incentive compatibility of a procedure inducing the splitting τ P T pµ0q.

That is, we examine the following cost minimization problem:

min
σ,t:MÑR`

ÿ

µPsupppτq

τpµqt
`

σpµq
˘

(CMτ )

s.t.
ÿ

µPsupppτq

t
`

σpµq
˘ 

τpµq ´ φpσpµqq
(

ě c. (ICτ )

The value function of this program can be written as c` Γpτq, where Γpτq is the agency cost

corresponding to the splitting τ . Fixing σp¨q, we have a linear program in t
`

σp¨q
˘

, and we can

show that the incentive constraint must bind. Hence, together with the positivity constraints,

the binding incentive constraint defines a convex and compact polytope. By the Extreme

Point Theorem, this implies that the minimum expected payment can be obtained by paying

the agent a positive amount at a single belief µ:, the payment belief, and nothing otherwise.

The binding incentive constraint yields

t
`

σpµ:q
˘

“
c

τpµ:q ´ φ
`

σpµ:q
˘ .
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The expected payment made by the principal is then

τpµ:qc

τpµ:q ´ φ
`

σpµ:q
˘ .

To minimize this expected payment, the principal optimally chooses µ: to be the most likely

belief under τ , and matches this belief with the least likely message under φ.

Lemma 6. Let τ P T pµ0q. Then there exists a solution pσ, tq of (CMτ ) such that σpµ:q “ m:,

where µ: P argmaxµPsupp τ τpµq and m: P argminm φpmq, and

tpmq “

$

&

%

c
τ´φ

if m “ m:,

0 otherwise
.

The value function of (CMτ ) is given by c ` Γpτq, where Γpτq “
cφ

τ´φ
.

Hence, the principal wants to pay the agent only when the relative likelihood that the

agent has used the new procedure rather than the default is at the highest. Naturally, we can

now reformulate (P1) as

max
τPT pµ0q

ÿ

µPsupppτq

τpµqvpµq ´ rc ` Γpτqs. (P2)

Lemma 7. The triple pτ, σ, tq solves (P1) if and only if τ solves (P2) and pσ, tq solves the

cost minimization problem (CMτ ). Furthermore, the value function of (P2) equals V pµ0q.

To conclude, we show that any solution of (P) (from Section 4.2) is SMP-associated with

a splitting of µ0 that solves (P2).

Lemma 8. Any splitting τ P T pµ0q that is SMP-associated to a solution pp, µ:, µ̂q of the

program (P) solves (P2).

The problem of the principal thus reduces to solving (P), which establishes Theorem 1.

5 Information Acquisition

In this section, we go back to the model without language constraints and focus on information

acquisition. We show that the problem of the principal can then be recast as the choice of a

21



payment action minimizing a family of increasing and convex loss functions of the payment

probability p. An increase in the switching cost c of the agent induces the principal to design a

less informative procedure (in the sense of Blackwell) whenever this payment action is invariant

as a function of the payment probability.

In this case, the principal is also the single receiver, choosing an action a P A. Let upa, ωq

denote her utility from choosing action a in state ω. Her belief-contingent decision payoff is

then16

vpµq “ max
a

ÿ

ω

µpωqupa, ωq,

which is a convex function, and its concavification can be written

v̂pµq “
ÿ

ω

µpωqupaω, ωq,

where aω denotes a payoff-maximizing action in state ω.

Following the SMP construction in Section 4.2, consider a binary splitting pp, µ:, µ̂q, and

the SMP-associated splitting, procedure and transfer scheme. Under this procedure, in the

information acquisition case, the principal perfectly learns the state of the world ω, and picks

aω, whenever the payment message is not generated. Let a: denote her choice of action when

receiving the payment message. Then her state contingent loss is given by

ℓpa:, ωq :“ upaω, ωq ´ upa:, ωq.

The probability xpωq of each of these losses is given by the probability of receiving the payment

message and being in state ω, that is xpωq “ pµ:pωq. Since µ: is part of the design, we can

reformulate this choice as a choice of x, yielding the following expected loss from action a::

La:ppq :“ min
x

ÿ

ω

xpωqℓpa:, ωq (La:)

s.t.
ÿ

ω

xpωq “ p

0 ď x ď µ0,

where the first constraint comes from the definition of x, and the second constraint comes

from the Bayes plausibility constraint pµ: ` p1 ´ pqµ̂ “ µ0. Then, for any given payment

16We assume existence of this value function, for example by compactness of A and continuity of up¨, ωq.
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probability p, the problem of the principal is reduced to the choice of the payment action a:

that minimizes this expected loss.

Proposition 4. In the information acquisition case, the informational payoff function of the

principal is given by

Ippq “ v̂pµ0q ´ min
a:

La:ppq.

We can use duality to simplify the program of the principal. Indeed, applying duality to

the program (La:) yields:17

La:ppq “ max
λě0

pλ ´
ÿ

ω

µ0pωq
“

λ ´ ℓpa:, ωq
‰`
,

where λ is the Lagrange multiplier on the constraint
ř

ω xpωq “ p, and can therefore be

interpreted as the shadow price of increasing the probability of payment p (which is paid

through the sacrifice of useful information).

Getting rid of the constant v̂pµ0q in the program of Proposition 4, and bringing back the

agency cost γppq, we can rewrite the problem of the principal as:

max
a:,pąφ

min
λ

ÿ

ω

µ0pωq
“

λ ´ ℓpa:, ωq
‰`

´ pλ ´ γppq.

The objective function being convex in λ and concave in p, we can use the Minimax Theorem

to switch the order of the minimization over λ and the maximization over p.18 By doing

this, we obtain a straightforward optimization problem in p, whose first order condition is

λ ` γ1ppq “ 0:19 increasing p lowers the agency cost but implies an informational loss equal

to the shadow price λ. The first order condition gives p “ φ`

b

cφ

λ
. Substituting for p in the

program above then yields

max
a:

min
λě0

ÿ

ω

µ0pωq
“

λ ´ ℓpa:, ωq
‰`

´ λφ ´ 2
b

cφλ. (D)

This gives us the following proposition, which provides a general strategy for solving informa-

tion acquisition problems in our framework.

17 We use the notation z` “ maxtz, 0u.
18Since γpφq is infinite, pφ, 1s can be replaced by a compact set without affecting the problem.
19The second order condition is trivially satisfied, since γp¨q is convex.
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Proposition 5. Let pa:, λq solve (D), and p :“ φ `

b

cφ

λ
. If p ě 1 then an uninformative

procedure is optimal. Otherwise, pick a vector 0 ď x ď µ0 with
ř

ω xpωq “ p and satisfying

xpωq “

$

&

%

0 if λ ă ℓpa:, ωq;

µ0pωq if λ ą ℓpa:, ωq.

Then pp, µ:, µ̂q solves (P), where µ: :“ x
p
and µ̂ :“ µ0´x

1´p
.

Hence the principal chooses a payment belief that puts positive probability only on states

for which the loss induced by the suboptimal payment action is lower than the shadow price

λ, whereas the resplitting belief is supported on states for which the payment action would

induce a loss higher than λ. At the optimum, all the high loss states are perfectly revealed,

whereas the low loss states are bundled into the payment message.

We next illustrate how to use this result to characterize an optimal procedure in a modified

version of the example in Section 2.

Example 3. The ministry of transport is again considering building a public transportation

infrastructure, and can design a new procedure. However, it now faces three options: building

a low speed train line (a1), building a high speed train line (a2), or not building anything

(a3). The states of the world are ω1, ω2 and ω3, with prior probability distribution such that

µ0pω1q ą µ0pω2q ą µ0pω3q. The principal’s payoff function, upai, ωjq, is given by the matrix

upa, ωq “

»

—

–

u1 0 0

0 u2 0

0 0 u3

fi

ffi

fl

with 0 ă u1 ă u2 ă u3, so that good decisions yield higher payoff in less likely states.

To solve for the principal’s optimal procedure, define

gipλq :“
ÿ

j

µ0pωjq
 

λ ´ ℓpai, ωjq
(`
.

Note that each function gi is convex, and that g1 ą g2 ą g3. Thus, in program (D) it is optimal

to set a: “ a1. Minimizing g1pλq ´ λφ´
a

cφλ with respect to λ completes the solution of the

problem. In Figure 4, the solid (respectively, dashed) arrows depict the evolution of µ: (resp.

µ̂) as c increases.
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µ: µ̂

Figure 4: Example 3

In Example 3, just as in our introductory example, larger values of c lead to less informative

optimal procedures. The next proposition provides a sufficient condition for this result to hold.

Proposition 6. In the information acquisition case, if there exists a˚ P A such that, for all

a P A, and all λ ě 0,

ÿ

ω

µ0pωq
“

λ ´ ℓpa˚, ωq
‰`

ě
ÿ

ω

µ0pωq
“

λ ´ ℓpa, ωq
‰`
,

then there exists a selection of optimal procedures ψpcq such that the corresponding payment

action is independent of c, and ψpcq becomes less Blackwell informative as c increases.

We next illustrate, with another example, a situation in which the payment action varies

as the switching cost increases, and the optimal procedure is not monotonic in the Blackwell

order.

Example 4. The setup is the same as in Example 3, where the prior distribution is now
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µ0 “ p5
8
, 2
8
, 1
8
q, and the principal’s payoff is given by the matrix:

upai, ωjq “

»

—

–

1 0 ´8

0 3 ´10.5

0 0 0

fi

ffi

fl
.

State ω1 may for instance correspond to the “normal” growth state of the economy, state ω2 is

a boom state, and state ω3 a recession.20 The payoff matrix above then captures the idea that

whereas building a high speed line can be beneficial in case countries grow fast, new train lines

may be underused and socially wasteful in case of recessions. The default procedure generates

the messages build high speed, build low speed and do not build with equal probabilities.

The principal’s optimal procedure is illustrated in Figure 5. The blue (respectively red)

letters depict the evolution of the payment belief µ: (resp. µ̂). As p increases from p1 to p2

the payment belief goes from A to B in a straight line. At p2 the payment belief jumps to C,

and then follows the blue curve all the way to point D, that is reached at p “ p3. The payment

belief then jumps to E, before going to the prior µ0 in a straight line.

Intuitively, at low p, the principal optimally selects a procedure biasing recommendations

in favor of building low speed because the state ω1, in which building low speed is optimal,

is the most likely of all states: biasing recommendations in favor of building low speed thus

minimizes the frequency of sub-optimal recommendations. At larger values of p, however, the

principal instead selects a procedure biasing recommendations in favor of building high speed.

The reason is that the loss from building high speed in the “low speed state” ω1 is smaller than

the loss from building low speed in the “high speed state” ω2. At even larger values of p, the

principal selects a procedure biasing recommendations in favor of not building. The reason is

that, in state ω3, the losses from building anything are very large.

20We assume in the narrative that the country’s growth potential is independent of the ministry’s decision.
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Figure 5: Example 4

6 Extensions

6.1 Multiple Defaults

We first extend our analysis to situations in which the agent has access to a set K of default

procedures. Extending previous notations, let φkpmq denote the probability of message m

under the default procedure k P K, φ
k
:“ mins φkpsq, and

γkppq :“
cφ

k

p ´ φ
k

.

27



The problem of the principal is now

max
ψ,t

ÿ

ω,m

µ0pωqψpm|ωq
 

v
`

µpm;ψq
˘

´ tpmq
(

(P0K)

s.t.
ÿ

ω,m

µ0pωqψpm|ωqtpmq ´ c ě
ÿ

m

φkpmqtpmq, @k P K. (ICk)

We show that, if φkpmq possesses a saddle point in pm, kq, this problem reduces to a problem

with a single default procedure.

Proposition 7. Suppose φkpmq possesses a saddle point pm˚, k˚q, that is,

φkpm˚q ď φk˚pm˚q ď φk˚pmq, @k P K, @m P M.

Let pψ, tq be a solution of the single-default problem (P0) with default procedure φk˚ constructed

as in Theorem 1. Then pψ, tq is also a solution of (P0K).

To see this, first note that the principal weakly prefers pψ, tq to any solution of (P0K),

since (P0) is a less constrained program. Furthermore, pψ, tq must satisfy (ICk˚) since it is

exactly the incentive constraint of the single-default program. The saddle-point property then

implies that all other incentive constraints must hold as well, making pψ, tq feasible for (P0K).

We show in Appendix B.2 that failure of the saddle-point property generically implies the

existence of a procedure that can only be implemented by paying the agent for more than one

message realization.

6.2 Procedure-Dependent Cost

In this section, we allow the agent’s switching cost to depend on the complexity of the proce-

dures. We follow Gentzkow and Kamenica (2014) and assume that the cost of a procedure ψ

inducing belief distribution τψ is given by Cpτψq, for

Cpτψq “ Hpµ̃q ´
ÿ

µPsupppτψq

τψpµqHpqµq,
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where H : ∆Ω Ñ R` is strictly concave, µ̃ is an arbitrary interior belief, and qµ P ∆Ω

satisfies:21

qµpωq :“
µpωqµ̃pωq

µ0pωq

˜

ÿ

ω1PΩ

µpω1qµ̃pω1q

µ0pω1q

¸´1

.

Now define

Γpµ, pq :“ Hpqµq

ˆ

1 `
φ

p ´ φ

˙

,

and

Πpµ, pq :“ vpµq ´ Γpµ, pq.

Then we can consider two possible definitions of the switching cost. First, we may assume

that running the default procedure has become costless for the agent regardless of its com-

plexity, but that the cost of running the new procedure is complexity dependent, so that the

switching cost is now given by c ` Cpτψq. Second, we may assume that the switching cost

is merely given by the difference in complexity plus a potential fixed cost, so that the total

switching cost is now given by

c ` Cpτψq ´ Cpτφq “ c `
ÿ

µPsupppτφq

τφpµqHpqµq ´
ÿ

µPsupppτψq

τψpµqHpqµq.

In both cases, we can extend Theorem 1 and retrieve the principal’s optimal procedure

from the solution of

max
pąφ,µ:,µ̂

pΠpµ:, pq ` p1 ´ pqΠ̂pµ̂, pq ´ γHppq (PΠ)

s.t. pµ: ` p1 ´ pqµ̂ “ µ0,

where Π̂p¨, pq denotes the concavification of Πp¨, pq, and

γHppq :“

ˆ

1 `
φ

p ´ φ

˙

`

c ` Hpµ̃q
˘

21As discussed in Gentzkow and Kamenica (2014), if m is a message that induces posterior µ for an observer
with prior µ0, then this message induces the posterior qµ for an observer with prior µ̃ (see the transformation
in Alonso and Câmara (2016) or Laclau and Renou (2016)).

29



in the first case, and

γHppq :“

ˆ

1 `
φ

p ´ φ

˙

¨

˝c `
ÿ

µPsupppτφq

τφpµqHpqµq

˛

‚.

in the second case.

7 Conclusion

We have proposed a tractable model to analyze problems of information design with agency

under the crucial assumptions that the contractible outputs of information structures are the

messages they generate, that these messages must be chosen from a certain common language,

and that their use may be constrained, which we can interpret as messages having a meaning.

We have also showed how this framework can in fact capture other natural assumptions about

contractibility. We chose one fruitful way of modeling language constraints, but there are

other interesting ways of doing so that should be explored in future work, and we suggested

one of them.
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Appendix

A Proofs

A.1 Proving Theorem 1.

We start by proving all the intermediary results in the proof of the theorem from Section 4.

Proof of Lemma 1: Let pp, µ:, µ̂q solve (P), and τ a splitting of µ0 associated with this

solution, that is, τpµ:q “ p and τpµq “ p1 ´ pqαpµq for all µ P supppαq, where α P Tvpµ̂q.

Suppose, by way of contradiction, that τ ą p. Define p1 “ τ . Let µa P argmaxµPsupppτq τpµq

and µb “ µ0´p1µa
1´p1 . Then:

p1vpµaq ` p1 ´ p1qv̂pµbq ´ rc ` γpp1qs ą p1vpµaq ` p1 ´ p1q
ÿ

µPsupppτqztµau

τpµqvpµq

1 ´ p1
´ rc ` γppqs

“
ÿ

µPsupppτq

τpµqvpµq ´ rc ` γppqs

“ pvpµ:q ` p1 ´ pq
ÿ

µPsupppτqztµ:u

αpµqvpµq ´ rc ` γppqs

“ pvpµ:q ` p1 ´ pqv̂pµ̂q ´ rc ` γppqs.

This contradicts the optimality of pp, µ:, µ̂q. �

Proof of Lemma 4: Let pψ, tq satisfy (IC0). Suppose that there exist messages m1 ‰ m2

such that µpm1;ψq “ µpm2;ψq. Pick labels such that φpm1q ď φpm2q. Then let ψ̃ be the

procedure defined by ψ̃pm|ωq “ ψpm|ωq whenever m R tm1,m2u, ψ̃pm1|ωq “ ψpm1|ωq `

ψpm2|ωq and ψ̃pm2|ωq “ 0, so that m2 is never generated under ψ̃. Then we have µpm1; ψ̃q “

µpm1;ψq “ µpm2;ψq. We also choose the new transfer scheme t̃ such that t̃pmq “ tpmq for

every m R tm1,m2u, t̃pm2q “ 0, while

t̃pm1qψ̃pm1q “ tpm1qψpm1q ` tpm2qψpm2q. (1)

By construction, pψ, tq and pψ̃, t̃q deliver the same expected transfer to the agent and the

same expected payoff to the principal. Hence, to show the lemma it is sufficient to show that
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pψ̃, t̃q satisfies (IC0). To see this, notice that

ψ̃pm1qt̃pm1q `
ÿ

mRtm1,m2u

ψpmqtpmq ´ c “
ÿ

m

ψpmqtpmq ´ c

ě
ÿ

m

φpmqtpmq

ě
ÿ

mRtm1,m2u

φpmqtpmq ` φpm1q
`

tpm1q ` tpm2q
˘

ě
ÿ

mRtm1,m2u

φpmqtpmq ` φpm1qt̃pm1q.

The first equality is by application of (1); the first inequality follows from the assumption that

pψ, tq satisfies (IC0); the second inequality uses φpm1q ě φpm2q; the last inequality follows

from (1). �

Proof of Lemma 5: Let pτ, σ, tq solve (P1). Suppose, by way of contradiction, that there

exists pψ1, t1q that satisfies (IC0) and such that

ÿ

ω,m

ψ1pm|ωq
 

v
`

pµpm;ψ1q
˘

´ t1pmq
(

ą
ÿ

ω,m

ψτ,σpm|ωq
 

v
`

pµpm;ψτ,σq
˘

´ tpmq
(

. (2)

Let D “
 

µpm;ψ1q
(

mPM
. By Lemma 4, we can without loss of generality assume that

ψ1 generates a distinct belief for each message. The function σ1 : D Ñ M that associates

to µ P D the unique message m P M such that µpm;ψ1q “ µ is therefore well defined and

injective. Next, define τ 1p¨q by τ 1pµq “
ř

ω µ0pωqψ1
`

σ1pµq|ω
˘

for each µ P D, and τ 1pµq “ 0

otherwise. Then:

ÿ

µPD

τ 1pµq “
ÿ

µPD,ω

µ0pωqψ1
`

σ1pµq|ω
˘

“
ÿ

ω,m

µ0pωqψ1
`

m|ω
˘

“
ÿ

ω

µ0pωq “ 1.

Moreover, for all ω P Ω:

ÿ

µPD

τ 1pµqµpωq “
ÿ

m,ω1

µ0pω1qψ1
`

m|ω1
˘

µpm;ψ1qpωq “
ÿ

m,ω1

µ0pω
1qψ1

`

m|ω1
˘ µ0pωqψ1pm|ωq
ř

ω2 µ0pω2qψ1pm|ω2q

“
ÿ

m

µ0pωqψ1pm|ωq “ µ0pωq.

Hence, τ 1 P T pµ0q.
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Now notice that (IC0) for pψ1, t1q and (IC1) for pτ 1, σ1, t1q are the same equations, and that

the value of the objective function of (P1) at pτ 1, σ1, t1q is equal to the value of the objective

function of (P0) at pψ1, t1q. The same remark also applies to pψτ,σ, tq and pτ, σ, tq. But then

(2) contradicts the optimality of pτ, σ, tq. �

Proof of Lemma 6: We proceed in two steps. The first step fixes the assignment function

σ, and minimizes the cost of implementing τ given σ. The second step selects σ to minimize

the cost of implementing τ .

Let σ : supppτq Ñ M . Consider

Γσpτq “ min
t:SÑR`

ÿ

µPsupppτq

τpµqt
`

σpµq
˘

s.t.
ÿ

µPsupppτq

t
`

σpµq
˘ 

τpµq ´ φpσpµqq
(

ě c.

We can recast this program as

Γσpτq “ min
z:supppτqÑR`

ÿ

µPsupppτq

zpµq

s.t.
ÿ

µPsupppτq

ˆ

τpµq ´ φpσpµqq

τpµq

˙

zpµq ě c.

Any solution of the problem above satisfies zpµq “ 0 for all µ R argmax

"

τpµq´φpσpµqq
τpµq

*

, i.e. for

all µ R argmin φpσpµqq
τpµq

. Moreover, defining ℓτ,σ :“ minµPsupppτq
φpσpµqq
τpµq

, either ℓτ,σ “ 1 in which

case Γσpτq is infinite, or ℓτ,σ ă 1 in which case

Γσpτq “
c

1 ´ ℓτ,σ
.

Minimizing Γσpτq over σ therefore amounts to minimizing ℓτ,σ over σ. It is easy to see that

ℓτ,σ is minimized by assigning the most likely belief under τ to the least likely signal under φ.

�

Proof of Lemma 7: Suppose pτ, σ, tq solves (P1). If pσ, tq did not solve (CMτ ) then by

taking a solution pσ1, t1q of (CMτ ) we would obtain a triple pτ, σ1, t1q that satisfies (IC1) and
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such that
ÿ

µPsupppτq

τpµq
 

vpµq ´ t1
`

σ1pµq
˘(

ą
ÿ

µPsupppτq

τpµq
 

vpµq ´ t
`

σpµq
˘(

,

which would contradict the optimality of pτ, σ, tq. So pσ, tq solves (CMτ ) and

ÿ

µPsupppτq

τpµqt
`

σpµq
˘

“ c ` Γpτq.

This concludes the proof of the only if part of the lemma.

For the if part, suppose τ solves (P2) and pσ, tq solves (CMτ ). Consider a triple pτ 1, σ1, t1q

such that
ÿ

µPsupppτ 1q

t1
`

σ1pµq
˘ 

τ 1pµq ´ φpσ1pµqq
(

ě c.

Then, by definition of Γp¨q,

ÿ

µPsupppτ 1q

t1
`

σ1pµq
˘

τ 1pµq ě c ` Γpτ 1q.

This, in turn, implies

ÿ

µPsupppτ 1q

τ 1pµq
 

vpµq ´ t1
`

σ1pµq
˘(

ď
ÿ

µPsupppτ 1q

τ 1pµqvpµq ´ rc ` Γpτ 1qs

ď
ÿ

µPsupppτq

τpµqvpµq ´ rc ` Γpτqs

“
ÿ

µPsupppτq

τpµq
 

vpµq ´ t
`

σpµq
˘(

.

Therefore pτ, σ, tq solves (P1). �

Proof of Lemma 8: Let τ P T pµ0q be SMP-associated with the solution pp, µ:, µ̂q of the

program (P). We claim that τ solves (P2). Suppose, by way of contradiction, that this is not

the case, and let τ 1 P T pµ0q do better than τ for (P2). Let p
1 “ maxµ τ

1pµq, µa P argmaxµ τ
1pµq,
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and µb “ µ0´p1µa
1´p1 . Then

p1vpµaq ` p1 ´ p1qv̂pµbq ´ γpp1q ě p1vpµaq ` p1 ´ p1q
ÿ

µPsupppτ 1qrtµau

τ 1pµqvpµq

1 ´ p1
´ γpp1q

“
ÿ

µPsupppτ 1q

τ 1pµqvpµq ´ Γpτ 1q

ą
ÿ

µPsupppτq

τpµqvpµq ´ Γpτq

“ pvpµ:q ` p1 ´ pq
ÿ

µPsupppτqrtµ:u

αpµqvpµq ´ γppq

“ pvpµ:q ` p1 ´ pqv̂pµ̂q ´ γppq.

This contradicts the optimality of pp, µ:, µ̂q for program (P). �

Finally, we will need one additional lemma.

Lemma 9. If pp, µ:, µ̂q is a solution of (P), then for all α P Tvpµ̂q, αpµ:q “ 0.

Proof: Assume p ă 1 (the case p “ 1 is trivial). Suppose by way of contradiction that

αpµ:q ą 0. Define

p1 :“ p ` p1 ´ pqαpµ:q,

and

µ̃ :“
µ0 ´ p1µ:

1 ´ p1
.

Notice that, since µ0 “ pµ: ` p1 ´ pqµ̂ and
ř

µPsupppαq αpµqµ “ µ̂, we can also write

µ̃ “
p1 ´ pq

ř

µPsupppαqrtµ:u αpµqµ

1 ´ p1
. (3)
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Then, using (3) and 1 ´ p1 “ p1 ´ pq
`

1 ´ αpµ:q
˘

:

p1vpµ:q`p1 ´ p1qv̂pµ̃q “ pvpµ:q ` p1 ´ pqαpµ:qvpµ:q ` p1 ´ pq
`

1 ´ αpµ:q
˘

v̂pµ̃q

ě pvpµ:q ` p1 ´ pqαpµ:qvpµ:q ` p1 ´ pq
`

1 ´ αpµ:q
˘

ÿ

µPsupppαqrtµ:u

p1 ´ pqαpµqvpµq

1 ´ p1

“ pvpµ:q ` p1 ´ pqαpµ:qvpµ:q `
ÿ

µPsupppαqrtµ:u

p1 ´ pqαpµqvpµq

ě pvpµ:q ` p1 ´ pq
ÿ

µPsupppαq

αpµqvpµq

“ pvpµ:q ` p1 ´ pqv̂pµ̂q.

As γp¨q is strictly decreasing, the triple pp1, µ:, µ̃q thus satisfies:

• µ0 “ p1µ: ` p1 ´ p1qµ̃;

• γpp1q ă γppq;

• p1vpµ:q ` p1 ´ p1qv̂pµ̃q ě pvpµ:q ` p1 ´ pqv̂pµ̂q.

This contradicts the optimality of pp, µ:, µ̂q for program (P). �

Proof of Theorem 1: First, we show that there exists a solution to (P). By choosing p “ 1

in (P), it is possible to achieve the value vpµ0q ´ γ̃p1q for the principal. Furthermore v̂pµ0q is

an upper bound for the informational payoff of the principal. For p sufficiently close to φ, the

agency cost is so high that the principal would not want to choose p even if she could attain

her best informational payoff by doing so. This is the case if

v̂pµ0q ´ γppq ă vpµ0q ´ γp1q,

or equivalently if

p ă p :“ φ `
cφ

v̂pµ0q ´ vpµ0q `
cφ

1´φ

.

Hence, if p ă 1, we can rewrite (P) as a maximization problem over the set of triples pp, µ:, µ̂q P

rp, 1s ˆ∆Ω2 that satisfy (BP), which is a compact set. The objective function in (P) is upper

semicontinuous in pp, µ:, µ̂q, hence it attains its maximum value (see, for example, Aliprantis

and Border, 2006, theorem 2.43).
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The only remaining case is if p ą 1. In this case, the principal can not do better than

choosing an uninformative procedure, and a solution to (P) exists with p “ 1.

We can now conclude the proof of the theorem. Pick a solution pp, µ:, µ̂q of (P), to which

the SMP construction associates a splitting τ , and a procedure ψ that generates this splitting,

and a transfer scheme t that enforces it. Lemma 8 ensures that τ solves (P2). By Lemma 9

above, Lemma 1 and Lemma 6, we know that the matching of messages to beliefs of the SMP

construction and t solve the cost minimization problem (CMτ ), so that pψ, tq solves (P1) by

Lemma 7. Finally, by Lemma 5, pψ, tq solves (P0). �

A.2 Properties of optimal procedures.

Next we prove the results of Section 4 that give the main general properties of optimal pro-

cedures.

Proof of Lemma 2: The arguments of the proof are presented below the statement of the

lemma. �

Proof of Proposition 1: We show the only if part of the proposition (the proof of the if part

is analogous). Suppose pp, µ:, µ̂q solves (P) but that we can find p1 such that Ipp1q ´ γpp1q ą

Ippq ´ γppq. Let τ 1 P T pµ0q with τ
1 ě p1 and

ř

µPsupppτ 1q τ
1pµqvpµq “ Ipp1q. Then Γpτ 1q ď γpp1q.

Now pick a splitting τ P T pµ0q associated with pp, µ:, µ̂q (we know it exists, by Step 2 of the

proof of Theorem 1). As τ “ p (by Lemma 1), we have
ř

µPsupppτq τpµqvpµq ď Ippq. Hence:

ÿ

µPsupppτq

τpµqvpµq ´ rc ` Γpτqs ď Ippq ´ rc ` γppqs

ă Ipp1q ´ rc ` γpp1qs

ď
ÿ

µPsupppτ 1q

τ 1pµqvpµq ´ rc ` Γpτ 1qs.

But then τ does not solve (P2), which contradicts Lemma 8.

�

Proof of Proposition 2: The first part of the proposition is a direct consequence of the

Monotone Selection Theorem of Milgrom and Shannon (1994). For the second part, if v̂pµ0q “

vpµ0q the result follows from the first part of Proposition 3. Suppose that v̂pµ0q ą vpµ0q. Then,

37



by definition of p in the proof of Theorem 1, we have p ě 1 whenever

c ě c “
p1 ´ φq

`

v̂pµ0q ´ vpµ0q
˘

φ2
,

and the solution of (P) must then be such that p “ 1, which concludes the proof of the last

point.

�

Proof of Proposition 3: Suppose vpµ0q “ v̂pµ0q. By part (ii) of Proposition 2, Ip1q “

v̂pµ0q ě Ipp1q for all p1. Hence, since γppq is increasing in p, Ip1q ´ γp1q ą Ipp1q ´ γpp1q, for all

p1 ă 1. Then, by Proposition 1, a triple pp, µ:, µ̂q with p “ 1 solves program (P). That is, an

uninformative procedure is optimal for the principal.

Next, suppose v is convex. Let pp, µ:, µ̂q be a solution of (P) and suppose p ă 1. By Bayes

plausibility, we can then write µ: “ µ0´p1´pqµ̂
p

, so µ̂ must solve the program

max
µ̂

pv

ˆ

µ0 ´ p1 ´ pqµ̂

p

˙

` p1 ´ pqv̂pµ̂q

s.t. µ̂ P ∆Ω X
1

1 ´ p
pµ0 ´ p∆Ωq .

By convexity of v, v̂ is linear, and the objective function of this program is convex. The

set ∆Ω X 1
1´p

pµ0 ´ p∆Ωq is a compact and convex polytope, hence, by the Extreme Point

Theorem we can take µ̂ to lie at an extreme point of this set. Suppose, by way of contradiction,

that µ̂ P intp∆Ωq. Then it must lie at an extreme point of the set 1
1´p

pµ0 ´ p∆Ωq. However,

this implies that µ: lies at an extreme point of ∆Ω, which means that it puts probability 1

on a given state ω:. Then, let

µ̂1 “
1

1 ´ µ̂pω:q

`

µ̂ ´ µ̂pω:qδω:

˘

,

where δω: is the belief that puts mass 1 on ω:, and

p1 “ p ` p1 ´ pqµ̂pω:q

Note that p1 ą p and p1 ă 1. Furthermore, the triple pp1, µ:, µ̂1q defines a binary splitting of
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µ0, and we have

pvpµ:q ` p1 ´ pqv̂pµ̂q “ pvpδω:q ` p1 ´ pq
ÿ

ω

µ̂pωqvpδωq

“ pvpδω:q ` p1 ´ pqµ̂pω:qvpδω:q ` p1 ´ pq
`

1 ´ µ̂pω:q
˘

ÿ

ω

µ̂1pωqvpδωq

“ p1vpµ:q ` p1 ´ p1q
ÿ

ω

µ̂1pωqvpδωq.

Hence, pp1, µ:, µ̂1q delivers the same informational payoff as pp, µ:, µ̂q to the principal, but

lowers her agency cost since p1 ą p, which is a contradiction to the optimality of pp, µ:, µ̂q for

(P).

�

A.3 Language Constraints.

Proof of Lemma 3: Let pp, µ:, µ̂q solve (Pm:), and let τ P T pµ0q be a splitting associated

with this solution, that is, τpµ:q “ p, and τpµq “ p1 ´ pqαpµq for all µ P supppαq, where

α P Tvpµ̂q. As for all m P M the payoff function v is weakly concave on Λpmq, we can

moreover choose α such that, for all m P M , supppαq X Λpmq contains at most one element.

Now pick a collection M 1 “ tmµuµPsupppαq of distinct messages in M satisfying µ P Λpmµq for

all µ P supppαq. Let mµ: denote a message satisfying µ: P Λpmµ:q (such a message exists by

(LC2)). We claim that mµ: R M 1. Suppose, by way of contradiction, that mµ: “ mµ̃. Then

define p1 :“ p ` p1 ´ pqαpµ̃q, µa :“
pµ:`p1´pqαpµ̃qµ̃

p1 and µb :“
µ0´p1µa
1´p1 . Since Λpmµ:q is a convex

set, µa P Λpmµ:q. Moreover:

p1vpµaq ` p1 ´ p1qv̂pµbq ě p1

„

p

p1
vpµ:q ` p1 ´ pqαpµ̃qvpµ̃q



` p1 ´ p1qv̂pµbq

“ pvpµ:q ` p1 ´ pqαpµ̃qvpµ̃q ` p1 ´ p1qv̂pµbq

ě pvpµ:q ` p1 ´ pqαpµ̃qvpµ̃q ` p1 ´ p1q
ÿ

µPsupppαqztµ̃u

p1 ´ pqαpµq

1 ´ p1
vpµq

“ pvpµ:q ` p1 ´ pq
ÿ

µPsupppαq

αpµqvpµq

“ pvpµ:q ` `p1 ´ pqv̂pµ̂q.

�
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Proof of Theorem 2: The proof combines Lemma 3 with arguments analogous to those

used in the proof of Theorem 1. To avoid repetition, here we simply sketch the main steps.

Let τ P T pµ0q be a splitting of µ0 associated with a solution pp, µ:, µ̂q of (Pm:) for m “ m˚.

By Lemma 3, we can moreover choose τ to ensure the existence of a collection tmµuµPsupppτq of

distinct messages inM satisfying µ P Λpmµq for all µ P supppτq. Define the matching function

σ : supppτq Ñ M by σpµq “ mµ. Then ψτ,σ satisfies the language constraints. We claim that

pψτ,σ, tq solves the problem of the principal, where t : M Ñ R` denotes the transfer scheme

paying c
p´φpm˚q

at m˚ and nothing otherwise.

To show the claim, consider an arbitrary pair pψ1, t1q satisfying (IC0) as well as the language

constraints. Using arguments similar to those developed in the baseline model, we can without

loss of generality assume that the payment scheme t1 rewards the agent at a single message. Let

ma denote this message, µa :“ µpma;ψ
1q the belief this message induces under the procedure

ψ1, pa :“
ř

ω ψ
1pma|ωq the probability of ma under ψ1, and µb :“

µ0´paµa
1´pa

. Then the expected

payoff of the principal from choosing the pair pψ1, t1q can be bounded from above by pavpµaq `

p1 ´ paqv̂pµbq ´ γmappaq. However, pp, µ:, µ̂q solves (Pm:) for m “ m˚. Therefore:

pvpµ:q ` p1 ´ pqv̂pµ̂q ´ γm˚ppq ě pavpµaq ` p1 ´ paqv̂pµbq ´ γmappaq.

The left-hand side of this inequality is the expected payoff of the principal from choosing the

pair pψτ,σ, tq. So the claim is established. �

A.4 Information Acquisition

We start with a useful additional lemma.

Lemma 10. Let dpa:, ωq :“ upa:, ωq ´ upaω, ωq. Consider

max
xě0

ÿ

ω

xpωqdpa:, ωq

s.t.

$

&

%

ř

ω xpωq “ p;

x ď µ0.

Then the value of the program above is equal to the value of

min
ξ

pξ `
ÿ

ω

µ0pωq
“

dpa:, ωq ´ ξ
‰`
.
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Moreover, if x solves the first program and ξ solves the second then ξ ď 0 and

$

&

%

dpa:, ωq ´ ξ ą 0 ñ xpωq “ µ0pωq;

dpa:, ωq ´ ξ ă 0 ñ xpωq “ 0.

Proof: The dual of the first program in the statement of the lemma is

min
yě0,ξ

pξ ` µ0.y

s.t. ξ ` ypωq ě dpa:, ωq, for all ω.

Next, as µ0 " 0, if pξ, yq is a solution of the dual then

ypωq “ rdpa:, ωq ´ ξ
‰`
. (4)

So the dual can be rewritten as

min
ξ

pξ `
ÿ

ω

µ0pωq
“

dpa:, ωq ´ ξ
‰`
. (5)

Next, let x denote a solution of the primal problem and pξ, yq a solution of the dual. As p ě 0

and dpa:, ωq ď 0 for all ω, (5) implies ξ ď 0. Moreover, by complementary slackness,

$

&

%

ypωq ą 0 ñ xpωq “ µ0pωq;

ξ ` ypωq ą dpa:, ωq ñ xpωq “ 0.

Combined with (4), the previous conditions give

$

&

%

dpa:, ωq ´ ξ ą 0 ñ xpωq “ µ0pωq;

dpa:, ωq ´ ξ ă 0 ñ xpωq “ 0.

�

Proof of Proposition 5: By Lemma 10, we can formulate the dual problem of the principal
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as

max
p,a:

min
λ

ÿ

ω

µ0pωq
“

λ ´ ℓpa:, ωq
‰`

´ pλ ´ γppq.

The agency cost function γp¨q being convex, the maximand of the last program is concave

in p and convex in λ. Hence, by the Minimax Theorem, we may switch the order of the

minimization over λ and the maximization over p. Given λ, the maximization over p yields

ppλq “ φ `

b

cφ

λ
. Thus λppλq ` γ

`

ppλq
˘

“ 2
a

cφλ ` λφ. This gives program (D) right above

the statement of the proposition. The rest follows from Lemma 10. �

Proof of Proposition 6: Let W pa, λ; cq be the objective function of program (D), and

λ˚pcq P argminλě0 W pa˚, λ; cq. Note that λ˚pcq may depend on c, but a˚ is fixed. For

all a ‰ a˚, the condition in the proposition implies

min
λě0

W pa˚, λ; cq “ W pa˚, λ˚pcq; cq ě W pa, λ˚pcqq ě min
λě0

W pa, λ; cq.

Hence pa˚, λ˚pcqq is a solution of (D), which proves the first part of the proposition.

Let c2 ą c1 and, for i “ 1, 2, pi be an optimal payment probability under ci. By Proposition

2, p2 ě p1. Suppose p2 ą p1 (otherwise there is nothing to prove). For i “ 1, 2 pick an optimal

xi as in Proposition 5. It is also easy to see from (D) that λ2 ě λ1. Hence, we must have

x2 ě x1. Now for i “ 1, 2 let ψi denote a procedure consistent with xi. Then ψ1 is more

informative than ψ2, since ψ1 may be obtained by first running ψ2 and, conditional on the

realization of µ:
2, reveal the state of the world ω with probability x2pωq´x1pωq

x2pωq
, for all ω such

that x2pωq ą 0. �

A.5 Extensions

Proof of Proposition 7: The principal weakly prefers pψ, tq to any solution of (P0K), since

(P0) is a less constrained program. Since pψ, tq is SMP-constructed, the payment message m:

must satisfy φk˚pm:q “ φk˚pm˚q. From the incentive constraint of the single-default program

and the saddle-point property, we have, for all k P K:

ÿ

ω

µ0pωqψpm:|ωqtpm:q ´ c “ φk˚pm:qtpm:q ě φkpm:qtpm:q.

Therefore, pψ, tq satisfies each (ICk) and is a solution to (P0K). �
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B Additional Results and Examples

B.1 An example with language constraints.

This example shows that, with language constraints, the optimal procedure may be informative

even when the principal prefers no information in the absence of agency.

Example 5. The principal is a plant manager. As per an agreement with the unions, the

manager regularly hires a certified inspector (the agent) to report on workplace safety. The

working conditions could be safe (state ω1) or unsafe (state ω0). Abusing notation slightly, a

belief µ denotes the probability attached to ω1. For all posterior beliefs µ ă 1{2 the princi-

pal must incur safety-related expenses proportional to the likelihood that the plant is unsafe,

yielding payoffs

vpµq “

$

&

%

µ ´ 1{2 if µ ď 1{2;

0 if µ ě 1{2.

Hence the principal would prefer an uninformative procedure in the absence of agency. The

message set M “ tsafe, unsafeu. We assume that µ0 “ 1
3
, and that the default procedure is

fully informative: thus φpsafeq “ 1
3
and φpunsafeq “ 2

3
. The language constraint is captured

by ∆psafeq “ tµ : µ ě xu, for some x P r1{2, 1q representing the agent’s minimum safety

standards in order to report safe. There is no constraint associated with the message unsafe,

that is, ∆punsafeq “ ∆Ω.

We can show that there exists x̃ ą 1
2
such that if x ą x̃ then the principal’s optimal

procedure is informative. Generating information reduces the principal’s informational payoff

but enables the principal to pay the agent for announcing safe; as the latter message is least

likely under the default procedure, this reduces the agency cost incurred by the principal to

implement the new procedure.

B.2 Multiple defaults: failure of the saddle-point property.

Suppose φkpmq does not have a saddle point, but that the principal seeks to implement

a procedure ψ inducing the splitting τ P T pµ0q by paying the agent at a single message,

m1 say. To assure incentive compatibility, the principal must set tpm1q “ c
τ´φk1 pm1q

, where

k1 P argmaxk φk1pm1q is a most profitable deviation of the agent given payment at the single

message m1. As φkpmq does not have a saddle point, we can find m2 such that φk1pm2q ă

φk1pm1q. Therefore, if the procedure k1 were the unique possible deviation of the agent, the
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principal would reward the agent at m2, and not at m1. We conclude that, for all k̃ P K,

in the absence of a saddle point the expected cost of implementing ψ given the set K of

default procedures is strictly greater than the corresponding cost in the fictitious problem

where procedure k̃ is the unique possible deviation of the agent. In fact, in the absence of a

saddle point, paying the agent at a single message is not generally optimal.

Proposition 8. If φkpmq does not have a saddle point and, for all m P M , argmaxk φkpmq

contains a single element, then it is not the case that all procedures can be optimally imple-

mented using a single payment message.

Proof: Suppose φkpmq has no saddle point and that, for all m P M , the set argmaxk φkpmq

contains a single element. Let |M | “ n and consider a procedure ψ generating messages in

M with uniform probabilities. Pick an arbitrary message m̃ P M . We claim that no optimal

transfer scheme rewards the agents only when the message realization is m̃. If maxk φkpm̃q ě 1
n

the result is trivial, since no incentive compatible transfer scheme rewards the agent exclusively

at m̃. Therefore, assume henceforth maxk φkpm̃q ă 1
n
. Let t be an optimal transfer scheme

within the class of transfer schemes that reward the agent only when the message realization

is m̃. Then

tpm̃q “
c

1
n

´ φk̃pm̃q
,

where k̃ P argmaxk φkpm̃q. As φkpmq as no saddle point, there exists m1 such that φk̃pm1q ă

φk̃pm̃q. Next, define the transfer scheme t1 as follows:

$

’

’

’

&

’

’

’

%

t1pm̃q “ tpm̃q ´
´

1

n
´φ

k̃
pm1q

1

n
´φ

k̃
pm̃q

¯

ǫ;

t1pm1q “ ǫ;

t1pmq “ 0 @m R tm̃,m1u.

where tpm̃q
´

1

n
´φ

k̃
pm̃q

1

n
´φ

k̃
pm1q

¯

ą ǫ ą 0. We make two observations. First,

1

n

`

t1pm̃q ` t1pm1q
˘

“
1

n

ˆ

tpm̃q `
φk̃pm1q ´ φk̃pm̃q

1
n

´ φk̃pm̃q
ǫ

˙

ă
1

n
tpm̃q.

Thus the expected payment made by the principal is strictly lower under t1 than under t.
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Second,

t1pm̃q

ˆ

1

n
´ φk̃pm̃q

˙

`t1pm1q

ˆ

1

n
´ φk̃pm1q

˙

“

ˆ

tpm̃q ´
1
n

´ φk̃pm1q
1
n

´ φk̃pm̃q
ǫ

˙ˆ

1

n
´ φk̃pm̃q

˙

` ǫ

ˆ

1

n
´ φk̃pm1q

˙

“ tpm̃q

ˆ

1

n
´ φk̃pm̃q

˙

“ c.

Thus t1 satisfies (ICk̃).

Now, as argmaxk φkpm̃q “ tk̃u, any k ‰ k̃ is such that t satisfies ICk with a strict inequality.

This ensures that, by choosing ǫ sufficiently small, t1 also implements ψ. But the expected

cost to the principal of implementing ψ via t1 is less than the corresponding cost via t. Hence

t is not optimal.

�

Below is an example in which the saddle-point property is violated.

Example 6. Consider the following example, with c “ 1, M “ tm1,m2,m3u, and K “

tϕk1 , ϕk2u, where φk1 “ p 2
20
, 4
20
, 14
20

q and φk1 “ p 4
20
, 1
20
, 15
20

q. We look for the optimal payment

scheme implementing the procedure ψ generating each message in M with probability 1/3.

Notice first that, as argmaxmi φk1pmiq “ tm3u “ argmaxmi φk2pmiq, any optimal payment

scheme must satisfy tpm3q “ 0. Therefore, the cost minimization problem reduces to

min
tpm1q,tpm2qě0

1

3
ptpm1q ` tpm2q

˘

s.t.
ÿ

i“1,2

tpmiq

ˆ

1

3
´ φk1psiq

˙

ě 1,

ÿ

i“1,2

tpmiq

ˆ

1

3
´ φk2pmiq

˙

ě 1.

The set of feasible payments are represented by the gray area in Figure 6. The dashed lines show

the principal’s indifference curves. The unique optimal payment scheme has tpm1q “ 15{29

and tpm2q “ 50{29. Intuitively, rewarding the agent exclusively at m1 or exclusively at m2

enables the agent to save c and still receive the full payment with probability 1{5. By contrast,

spreading payments reduces the agent’s expected payment in case of deviation.
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tpm1q

tpm2q

Figure 6: Example 6
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