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Abstract

We study a class of sender-receiver disclosure games in the lab. Our experiment relies

on a graphical representation of sender’s incentives in these games, and permits partial

disclosure. We use local and global properties of the incentive graph to explain behavior

and performance of players across different games. Sender types whose interests are aligned

with those of the receiver fully disclose, while other types use vague messages. Receivers

take the evidence disclosed by senders into account, and perform better in games with

an acyclic graph. Senders perform better in games with a cyclic graph. The data is

largely consistent with a non-equilibrium model of strategic thinking based on the iterated

elimination of obviously dominated strategies.
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1 Introduction

In many economic interactions, agents provide hard evidence to influence the choice of others.

Firms disclose product information to consumers. Policyholders provide medical check-ups to

their insurers. At technology exhibitions, start-ups display their newest products to users and

competitors. Job candidates make claims on CVs that employers can often cross-check on the

Internet. In all these cases, the revealed information is verifiable and, yet, some of it can be

voluntarily omitted, presented more or less advantageously or made imprecise. The objective

of the informed party affects her incentive to shroud information, and the reading disclosed

information by the uninformed party. In this paper, we report the results of an experiment

that investigates how agents disclose and interpret evidence depending on the strategic context.

To do so, we use a collection of simple sender-receiver disclosure games that is rich enough to

vary the strategic context, while permitting a tractable common analysis. In general disclosure

games, the predictive power of perfect Bayesian equilibrium is plagued by multiplicity, and fully

revealing equilibria, while focal when they exist, can also be sustained by multiple strategies,

and sometimes fail empirically. We show that a non-equilibrium approach based on the iterated

elimination of obviously dominated strategies (Li, 2017) generates meaningful restrictions on

behavior that are well matched by the data, and can provide guidance for equilibrium selection.

The empirical and experimental disclosure literatures focus on situations where the sender

has monotonic incentives: She prefers to appear as having a “higher” informational type (better

quality, greater ability, etc). By contrast, the games in our experiment span various incentives

for the sender. This is important because non-monotonic incentives are omnipresent in economic

situations. Consider, for example, the following situation. Company A and company B compete

in the cell phone market. Company B is also present on the tablet market, where A is a potential

entrant. A has just held its board meeting and it is known that they have reached a decision

about entering the tablet market. This decision is private information but generates evidence,

such as a new product, that can be disclosed or hidden. If A has decided to enter, it would

prefer B to believe that it has not, so B does not engage into preventive R&D on a new tablet.

If A has decided not to enter, it would prefer B to believe it has, so B devotes resources to the

tablet market rather than to the cell phone market. In this case, the incentives of company A

are cyclic: when committed to enter, A wants to appear as not entering and vice versa. More

generally, cyclic incentives are natural in strategic situations with a Colonel Blotto flavor.1

When having committed resources to one front, a player prefers the opponent to think she will

attack on the other fronts. Non-monotonic incentives also arise naturally in situations where

the receiver does not know the direction of the sender’s bias,2 or where the sender is addressing

1In Colonel Blotto games, two players simultaneously allocate their resources across battlefields. These games
have been used to model research and development portfolio selection, political campaign resource allocation
and auctions with simultaneous bidding.

2Consider a researcher advising a dean deciding between hiring an experimentalist or a theorist. The re-
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a heterogeneous audience. Even in situations where the sender’s bias is fixed and known,

incentives to masquerade are not necessarily monotonic: The sender may want to appear as a

slightly higher type but not as any higher type as in the Crawford and Sobel (1982) model. In

the games we study, payoffs generate cyclic as well as acyclic but non-monotonic, and monotonic

incentives.

Our experiment incorporates multiple games into a unified framework. These games are

taken from a simple class of sender-receiver disclosure games in which the receiver essentially

wants to identify the type of the sender, and the sender may have various incentives. We

use a reduced representation of sender’s incentives, taken from Hagenbach et al. (2014), as a

graph whose nodes represent the different informational states (types) of the sender, and whose

oriented arcs represent masquerading incentives. Thus, there is an arc from type t to type s if

t wants to masquerade as s, that is, if the sender is better-off convincing the receiver that her

information is s when it really is t. A sender type is categorized as envious if she has an incentive

to masquerade as some other type, and satisfied otherwise. A satisfied sender’s interests are

aligned with the receiver’s, whereas an envious sender’s are not. We also distinguish between

games with masquerading cycles, and those without cycles. Acyclic games have a fully revealing

equilibrium (FRE), whereas cyclic games may or may not have one. In our experiment, the

information of the sender is materialized by two colored cards that she observes, and can reveal

as she sees fit. This simple design provides an original and natural way to allow for full disclosure

(FD), partial disclosure (PD) and no disclosure (silence).

Our empirical analysis has two parts. In the first part, we document how players’ perfor-

mance and behavior depend on sender categories (envious or satisfied), the nature of received

messages (FD, PD or silence) for receivers, and game categories (cyclic or acyclic). The main

findings are as follows. First, receivers overwhelmingly take evidence into account both in beliefs

and actions. That is, they report beliefs that do not put any weight on informational types that

are ruled out by the evidence, and take actions that reflect consistent beliefs. Second, satisfied

senders overwhelmingly fully disclose, whereas envious senders use vague messages (silence or

PD). While intuitive, this result is not a necessary feature of perfect Bayesian equilibrium. Fi-

nally, while satisfied senders perform equally well in all games, envious senders tend to perform

better, and receivers worse, in cyclic games (with or without FRE).

In the second part, we confront several theoretical models of strategic behavior in our class

of games with the data. The models we consider are perfect Bayesian equilibrium (PBE), fully

revealing equilibria (FRE), and a procedure of iterated elimination of obviously dominated

strategies (IEODS) based on the notion of obvious dominance recently introduced in Li (2017).

searcher knows which candidate is best but also has a hidden bias. His type set is {tT, tE, eT, eE} where tE
corresponds to a bias towards the theorist but information that the experimentalist is best. Then type eT would
like to be perceived as eE or tE, whereas type is tE would like to be perceived as type tT or eT . This induces
a cycle between types tE and eT .
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These concepts are defined, and their implications for our class of disclosure games derived in

the theory section of this paper (Section 3). PBE is defined as usual in disclosure games. Its

predictive power in our class of games is low as it induces few behavioral and payoff restrictions.

Consequently, it is difficult to exclude as a model of players behavior even though we do find

some discrepancies between beliefs reported by the subjects and empirical frequencies, and

subjects do sometimes fail to optimize with respect to reported beliefs. FRE can only be applied

to games for which it exists, but it induces significant restrictions on strategies, allowing us to

develop multiple measures of FRE. We show that FRE matches more than 80 to 90% of the

data according to these different metrics in the case of simple acyclic games. In the case of

more complicated acyclic games, the fit is good, but we document significant departures from

FRE. For cyclic games that have a FRE, however, FRE only matches a mall share of the data.

Finally, we consider IEODS. As in Li (2017), a strategy obviously dominates another if,

under all possible scenarios following the first informational node at which they differ, the

dominant one leads to a better payoff than the dominated one. IEODS is an appealing model

of behavior for boundedly rational players as comparisons between strategies do not require

contingent thinking. In the theory section, we show that, in the class of disclosure games we

consider, the first three rounds of elimination can be decomposed in specific steps: In the first

round, the receiver eliminates inconsistent strategies; in the second round, satisfied sender types

eliminate vague messages and envious ones eliminate fully disclosing messages, and those whose

consistent interpretations cannot lead to any benefit; in the third round, the receiver eliminates

strategies that attribute a vague message to satisfied senders, or to envious senders who cannot

gain from this message.

We suggest three ways of approaching the data based on the IEODS procedure. First,

we consider IEODS as a solution concept. We show that more than 96% of our receiver ob-

servations, and 85% of our sender observations correspond to strategies that survive IEODS,

showing that IEODS is a good predictor of behavior in our disclosure games. Of course, IEODS

generally does not pin down a unique behavior in our games, but neither does any other solu-

tion concept we consider, and IEODS is in fact relatively effective at reducing the players’ sets

of strategies. Second, we consider IEODS as a model of strategic thinking in our disclosure

games. Rounds of eliminations can be thought of as the levels of players in the spirit of the

level k literature (for a survey, see Crawford et al., 2013). While it is true that players largely

perform all rounds of elimination, the failure rates can become quite high for some steps of

the elimination procedure, up to 33% for the fourth round which is the highest possible one

in the games of the experiment. Furthermore, we use our decomposition of IEODS in steps

within rounds to show that failure rates are neither homogeneous within rounds nor increasing

in round (or level). Finally, we suggest using IEODS as a refinement of PBE by looking at PBE

in strategies that survive IEODS (denoted IEODS+PBE). This is in line with the argument
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that, when there are multiple equilibria, selection is often the result of learning dynamics so

that initial responses influence selected outcomes (Crawford, 1995; Camerer, 2003). We show

that, compared to PBE, IEODS+PBE narrows down predictions around empirical averages in

the payoff space.

2 Related Literature

While there is an extensive experimental literature3 on cheap talk models (Crawford and Sobel,

1982), communication with evidence (Grossman, 1981; Milgrom, 1981) has given rise to a much

thiner experimental literature. Early papers are mostly concerned with disclosure by a seller

in a market environment. Forsythe et al. (1989) and King and Wallin (1991a) consider an

informed seller, as in the models of Grossman (1981) and Milgrom (1981), and show that the

unraveling principle works well, leading to a fully revealing equilibrium after some learning.

King and Wallin (1991a) allow for partial disclosure through disclosure of given subsets of

possible values.4 They observe that departures from full disclosure arise as disclosure options

to the sender increase and buyers have no knowledge of these options. In this case, receivers

are insufficiently skeptical. Jin et al. (2015) run an experiment about quality disclosure in

which they conclude that unraveling fails as lower types do not disclose, and receivers are too

optimistic about sellers who choose not to disclose. However, they show that with feedback

about the interactions players learn and reach equilibrium. Benndorf et al. (2015) study an

environment with multiple senders, interpreted as workers, with the option to disclose their

productivity at a cost. There is no strategic receiver, but payoffs are designed to see how

far disclosure of higher types pushes disclosure of lower types. Their subjects under-reveal,

especially when of lower productivity. In a recent experiment which we discuss further below,

Schipper and Li (2018) study strategic thinking in games with monotonic incentives.

All these experiments consider environments with monotonic incentives for senders. We are

interested in understanding the behavior of senders and receivers in situations with a variety of

(monotonic or non-monotonic) incentives. Our paper is rooted in a body of theoretical works

that extends Grossman (1981) and Milgrom (1981) to richer setups. Seidmann and Winter

(1997) consider disclosure with preferences as in Crawford and Sobel (1982) that lead to non-

monotonic incentives, and introduce the notion of worst-case types, which gives an operational

definition of skepticism in non-monotonic environments.5 Okuno-Fujiwara et al. (1990) gener-

3See for example Dickhaut et al. (1995); Blume et al. (1998, 2002); Cai and Wang (2006); Wang et al. (2010)
for sender-receiver games, Battaglini and Makarov (2014) for a setup with multiple receivers, Vespa and Wilson
(2016) for multiple senders, and Lai et al. (2015) for multidimensional cheap talk.

4King and Wallin (1991b) and Dickhaut et al. (2003) also allow for partial disclosure in a model which adds
uncertainty about the seller’s information as in Dye (1985).

5Mathis (2008) looks at conditions on the set of evidence that make it possible to extend the result of
Seidmann and Winter (1997) to partial provability.
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alize Milgrom (1981) to environments in which players exchange verifiable information before

playing an incomplete information game, provide conditions for fully revealing equilibria to

exist and examples in which full revelation is not an equilibrium. Van Zandt and Vives (2007)

perform a similar exercise in supermodular games. Giovannoni and Seidmann (2007) show that

there is a unique pooling equilibrium in one-dimensional action games if the the bias of the

sender is strongly centripetal in both directions. Hagenbach et al. (2014) provide results that

encompass all previous full revelation results in this literature, and introduce a new approach

based on properties of the masquerade relation, i.e. the incentive graphs of informed players. In

a recent theoretical contribution, Rappoport (2017) studies games with monotonic incentives

when the evidence structure does not allow for fully revealing equilibria, and relates the degree

of equilibrium skepticism to the amount of evidence implicit in the type distribution.

This paper is related to the literature on strategic thinking, and in particular to the level-

k (Nagel, 1995; Stahl and Wilson, 1994, 1995; Costa-Gomes et al., 2001; Costa-Gomes and

Crawford, 2006) and cognitive hierarchy (Camerer et al., 2004) literatures. Crawford (2003) is

the first to apply level-k models to communication in a context in which intentions rather than

private information are signalled. However, our strategic thinking model is based on the notion

of obvious dominance introduced by Li (2017) to study obviously strategy-proof mechanism

design.6 IEODS is naturally related to the rationalizability literature (Bernheim, 1984; Pearce,

1984).

The most closely related experimental paper is Schipper and Li (2018). They study strategic

thinking in the form of cautious rationalizability in disclosure games with monotonic incentives

and complete unraveling, so that all PBE are fully revealing. Even though we used the first

steps of an iterated elimination procedure in the earlier version of this paper, Schipper and Li

(2018) are the first to systematically apply such an approach in an experiment on disclosure

games. The disclosure game they study, however, does not belong to the class of games we use

in our experiment. Their cautious rationalizability solution concept is equivalent to iterated

elimination of weakly dominated strategies on the normal form. This solution concept and

IEODS make exactly the same predictions in all games of both experiments7, and appear

to explain the data quite well in both cases. So we view our results as complimentary in

highlighting the usefulness of the procedure in explaining how subjects play disclosure games

in the lab.

Finally, the empirical literature on disclosure has also focused on environments with mono-

tonic masquerading incentives. Dranove and Jin (2010) give a nice overview of the literature

on quality disclosure. Brown et al. (2012) look at cold openings in the movie industry, and

observe that consumers fail to correctly infer the average quality of movies that are withheld

6See also the burgeoning literature on this topic (Ashlagi and Gonczarowski, 2016; Bade and Gonczarowski,
2017; Pycia and Troyan, 2018; Troyan, 2016; Zhang and Levin, 2015).

7However, we can provide examples of disclosure games in which they make different predictions.
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from critics. Luca and Smith (2015) study disclosure of international rankings by MBAs and

show how business schools manage to strategically present information in favorable ways.

3 Theoretical Background

In this section, we provide the necessary theoretical background for our analysis. We first

introduce a class of simple sender-receiver disclosure games that comprises all games in our

experiment. Then, we define the solution concepts that we will discuss as models of behavior

for our experiment, and describe how they operate on our class of games. All proofs for this

section are in Appendix A.

A class of disclosure games. We consider sender-receiver disclosure games that can be

described in the following framework. The sender’s type is drawn from a finite set T according

to a distribution p(·) with full support. The set of messages, or pieces of evidence, M(t) to

which she has access is contingent on her type. Hence a message m in M = ∪t∈TM(t) certifies

that the type of the sender lies in the subset E(m) = {t ∈ T : m ∈ M(t)} ⊆ T . We call this

correspondence E the evidence structure of the game. A subset of types T ′ ⊆ T is certifiable

if there exists a message m such that E(m) = T ′. We refer to any message that certifies T as

silence since it provides no information. If the sender certifies a singleton {t}, we say that her

message is fully disclosing. We refer to any message that is not fully disclosing as being vague.

If a message is vague but is not silence, we say that it is partially disclosing.

Assumption 1. Each sender type can at least remain silent or fully disclose.

The sender first chooses a message m to send, and the receiver then chooses an action a from

a finite set A after observing m. The payoffs of the sender and the receiver are given by uS(a, t)

and uR(a, t). We focus on games such that, for every t, the utility function of the receiver is

uniquely maximized by a single action a∗(t). Our second assumption, summarized below, is

that the receiver’s payoff is positive if the receiver plays her optimal action and 0 otherwise. In

the remainder of the paper, we refer to a∗(t) as the optimal action (of the receiver). We denote

a∗(T ′) the set of actions that are optimal for some type t in T ′.

Assumption 2. For every t, the receiver optimal action a∗(t) is the unique action such that

uR

(
a∗(t), t

)
> 0 and, for every a ̸= a∗(t), uR(a, t) = 0.

To state our last assumption, we first need to introduce some additional definitions.

Masquerade Relation. In disclosure games, it is useful to introduce the masquerade relation

to describe sender incentives as in Hagenbach et al. (2014). We say that type t wants to
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masquerade as type t′ ̸= t, and write t → t′, if

uS

(
a∗(t′), t

)
> uS(a

∗(t), t).

This relation is best pictured as a graph whose vertices are the elements of T , and where

there is an oriented arc between t and t′ if t → t′. Examples from the experiment are provided

in Table 2.

We say that type t is satisfied if there is no other type t′ that t wants to masquerade as,

and denote the set of satisfied types by Sat. We refer to non satisfied types as envious, and

denote the set of envious types by Env. We say that a sequence of types t1, · · · , tk forms a

masquerading cycle if, for every 1 ≤ ℓ ≤ k, tℓ → tℓ+1, where by convention tk+1 = t1. A

masquerade relation is cyclic if it admits a masquerading cycle, and acyclic otherwise. By

extension, we talk about cyclic and acyclic games.

Next, we introduce our last assumption. It says, first, that envious types are indifferent

between any type they do not want to masquerade as and themselves, and, second, that satisfied

types strictly prefer being identified to leading the receiver to any other action.

Assumption 3. If t is envious, and t ̸→ t′, then uS(a
∗(t′), t) = uS(a

∗(t), t). If t is satisfied,

then, for any t′ ̸= t, uS(a
∗(t), t) > uS(a

∗(t′), t).

In the remainder of this section, we focus on the class of disclosure games that satisfy our

three assumptions. This class includes all games in the experiment.

Examples from the Experiment. In the games of the experiment, a sender observes two

cards, each of them either yellow or blue, and can decide which cards she shows the receiver.

The type set of the sender is therefore T = {Y Y, Y B,BB}, the set of messages is M =

{∅, Y, B, Y Y, Y B,BB}. The evidence structure is summarized by Figure 1 which represents

all certifiable subsets. Among all subset of type, only {Y Y,BB} is not certifiable. The action

set of the receiver is A = {a, b, c}. The payoff matrix of the receiver is given by Table 1 in

all our experiments, so optimal actions always are a∗(Y Y ) = a, a∗(Y B) = b and a∗(BB) = c.

In contrast, the payoff of the sender varies across sessions, giving rise to different masquerade

relations. Table 2 shows three examples of sender matrices and associated masquerade relations

from the experiment. In all our games, payoffs only take value 0 or 3.

Worst-case types, skepticism and acyclicity. The notion of worst-case type, first intro-

duced by Seidmann and Winter (1997), captures the idea of skepticism. A worst-case type of a

subset T ′ ⊆ T is a type t′ ∈ T ′ that no other type t ∈ T ′ wants to masquerade as. Graphically,

it is a vertex in T ′ with no incoming arc from other types in T ′. The set of worst-case types

of T ′ is denoted by wct(T ′) = {t′ ∈ T ′ : t → t′ ⇒ t /∈ T ′}. By extension, we write wct(m)
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Y Y

Y B

BBY B

∅

Figure 1: Evidence structure in the experiment.

a b c
Y Y 3 0 0
Y B 0 3 0
BB 0 0 3

Table 1: Receiver payoff matrix in the experiment.

Game 1: monotonic

a b c
Y Y 0 3 3
Y B 0 0 3
BB 0 0 3

Game 2: double cycle

a b c
Y Y 0 3 0
Y B 3 0 3
BB 0 3 0

Game 3: long cycle

a b c
Y Y 0 0 3
Y B 0 3 0
BB 3 0 0

Table 2: Sender payoff matrices and masquerade relations for three games from the experiment.
Empty nodes are for envious types, filled nodes for satisfied types.

for wct(E(m)), and speak about the worst-case type of a message. For example, in Game 1 of

Table 2, type Y B is a worst-case type of message Y but not of the the silent message; in Game

2, the only messages with worst-case type are the fully disclosing ones; in Game 3, type Y B is

the only worst-case type of the silent message.

Worst-case types are key to full revelation as they provide an operational definition of

skepticism. Attributing vague messages to worst-case types allows the receiver not to reward

obfuscation attempts while remaining consistent with the evidence. However, worst-case types

need not exist. In Game 2 of Figure 2, for example, message Y has no worst-case type because

types Y Y and Y B form a masquerading cycle. The existence of worst-case types, and hence the

possibility of skepticism, is crucially related to the absence of masquerading cycles, as shown

by the following lemma.

Lemma 1. Every subset of types T ′ ⊆ T admits a worst-case type if and only if the masquerade

relation is acyclic.
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However, skepticism remains possible in the presence of cycles in the graph if some subsets

of types cannot be certified. This is the case in Game 3 of Table 2. If the sender could certify

the subset {Y Y,BB}, then the masquerading cycle between these two types would make it

impossible to find a worst-case type but, in the absence of such a message, skepticism is always

possible.

Strategies and Equilibrium. A strategy of the sender is a mapping µ(·) from types T to

messages M such that µ(t) ∈ M(t). Let M0 be the set of sender strategies. A strategy of the

receiver is a mapping α(·) from messagesM to actions A. LetA0 be the set of receiver strategies.

Denote by βm ∈ ∆(T ) the belief of the receiver following message m, and let β =
(
βm

)
m∈M

be her belief system. Our equilibrium concept is perfect Bayesian equilibrium (PBE). A triple

(µ, α, β) forms a PBE if, for every m ∈ M and every t ∈ T , it satisfies

α(m) ∈ argmax
a

∑
t

uR(a, t)βm(t) (receiver optimality)

µ(t) ∈ arg max
m∈M(t)

uS

(
α(m), t

)
(sender optimality)

µ(t) = m ⇒ βm(t) =
p(t)∑

t′:µ(t′)=m p(t′)
(Bayesian rationality)

βm

(
E(m)

)
= 1 (evidence consistency)

For the remainder of the paper, it is useful to extend the idea of consistency to receiver

strategies. We say that a strategy α of the receiver is a consistent strategy if for every message

m ∈ M , we have α(m) ∈ a∗
(
E(m)

)
. By Assumption 2, this is equivalent to α(m) being optimal

for some consistent belief βm. Otherwise, we say that α is inconsistent. Similarly, we say that

action a is consistent with message m if a = a∗(t) for some type t ∈ E(m).

A belief system is skeptical if every belief is concentrated on the set of worst-case-types of the

corresponding message. That is if, for every m ∈ M such that wct(m) ̸= ∅, βm

(
wct(m)

)
= 1.

It is also useful to extend the notion of skepticism from beliefs to strategies. We say that

a receiver acts skeptically if the action she picks following a message is the optimal action

associated with a worst-case type for this message, that is if, for every m ∈ M such that

wct(m) ̸= ∅, α(m) ∈ a∗
(
wct(m)

)
.

Fully revealing equilibria. We say that a PBE is a fully revealing equilibrium (FRE) if the

strategy of the sender is separating, that is, µ(t) ̸= µ(t′) when t ̸= t′. Skepticism is necessary

and sufficient for the existence of FRE. Indeed, we can extend results from Hagenbach et al.

(2014) to characterize FRE as follows in the class of games we consider.8

8In Appendix A, we extend this result to mixed strategy equilibria.
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Proposition 1. In our class of games, the following statements are equivalent:

(i) There exists a FRE (µ, α, β).

(ii) The receiver strategy α(·) is such that, for every m, α(m) ∈ a∗
(
wct(m)

)
, and the sender

strategy µ(·) is separating and such that, for every t, t ∈ wct
(
µ(t)

)
.

That is, in FRE, the receiver acts skeptically and the sender only sends messages for which

she is a worst-case type. In particular, for FRE to exist, it must be that every sender type has

access to a distinct message for which she is a worst-case type. This requirement is satisfied in

our class of games where full disclosure is always possible. Furthermore, for FRE to exist, every

certifiable subset of types must have a skeptical interpretation (a worst-case type). It follows

from Lemma 1 that all acyclic games have a FRE. Cyclic games can also have a FRE, as it is

the case for Game 3 in Table 2 (but not for Game 2).

Iterated Elimination of Obviously Dominated Strategies (IEODS). We propose a

heuristic for strategic reasoning in disclosure games based on the notion of obvious dominance

of Li (2017). Obvious dominance compares two strategies according to the worst and best case

scenarios they generate starting from the first information set at which they diverge. We next

state the definition of obvious dominance for sender and receiver strategies. Because the idea

is to iteratively eliminate obviously dominated strategies, we include in the definition a set of

available strategies for the other party.

As a preliminary, consider a set of possible strategies M for the sender. Then M(T ) =

{µ(t) : t ∈ T, µ ∈ M} is the set of messages that can be received given M, and I(m|M) =

{t ∈ T : ∃µ ∈ M, µ(t) = m} is the set of possible interpretations of m under M. For example,

the set of possible interpretations of m under the full set of sender strategies is exactly the set

of consistent interpretations: I(m|M0) = E(m).

Definition 1 (Obvious Dominance – Receiver). A receiver strategy α obviously dominates α′

given a subset M of sender strategies, denoted by α ▷M α′, if, for every m ∈ M(T ) such that

α(m) ̸= α′(m),

min
t∈I(m|M)

{
uR

(
α(m), t

)}
≥ max

t∈I(m|M)

{
uR

(
α′(m), t

)}
,

and, in case of equality, either
{
uR

(
α(m), t

)
: t ∈ I(m|M)

}
or

{
uR

(
α′(m), t

)
: t ∈ I(m|M)

}
is not a singleton.

Elimination of obviously dominated strategies for a receiver in our games requires that a

receiver facing message m considers all types of senders that might have sent her message m

given M, and selects actions according to the best and worst payoff they can generate in all

these possible scenarios. Consider Game 1 of Table 2, for example, and let M = M0 so that
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all sender strategies are available. Suppose that the message is Y . This message can only

have been sent by types Y Y and Y B. Hence choosing a delivers two possible payoffs: 3 or 0.

Similarly, b delivers either 3 or 0. However, c can only deliver 0 because type BB is ruled out.

Therefore playing c after Y is obviously dominated by both a and b.

Definition 2 (Obvious Dominance –Sender). A sender strategy µ obviously dominates µ′ given

a subset A of receiver strategies, denoted by µ ▷A µ′, if, for every t ∈ T such that µ(t) ̸= µ′(t),

min
α∈A

{
uS

(
α(µ(t)), t

)}
≥ max

α∈A

{
uS

(
α(µ′(t)), t

)}
,

and, in case of equality, either
{
uS

(
α(µ(t)), t

)
: α ∈ A

}
or

{
uS

(
α(µ′(t)), t

)
: α ∈ A

}
is not a

singleton.

Elimination of obviously dominated strategies for a sender in our games therefore requires

that a sender of type t considers all receiver actions that each of her messages can generate.

Consider Game 1 in Table 2, and suppose that receiver strategies are consistent. Then consider

a sender of type Y Y . If she sends the silent message ∅, consistent actions are a,b and c so

possible payoffs are 0 and 3. If she sends Y , consistent actions are a and b, and possible payoffs

are again 0 and 3. By contrast, if she fully discloses by choosing message Y Y , the only consistent

action is a, and the only possible payoff 0. Therefore full disclosure is obviously dominated by

both Y and ∅.
The iterated deletion procedure can be defined as follows. For every k ≥ 0,

Ak+1 =
{
α ∈ Ak : ∀α′ ∈ Ak, α′ ̸ ▷Ak α

}
,

and

Mk+1 =
{
µ ∈ Mk : ∀µ′ ∈ Mk, µ′ ̸ ▷Mk µ

}
.

It is easy to see that this procedure terminates in a finite number of steps and that nonempty

sets of sender and receiver strategies survive this process. We can think of k as indexing rounds

of elimination or the level of a player who performs exactly the first k rounds of elimination.

To illustrate this procedure, Table 3 shows how IEODS operates on our Game 1 of Table 2

with the monotonic masquerade9. Next, we follow this procedure step by step. At the first

round of elimination, only the receiver is active. Following each message of the sender, any

consistent choice of action may hit it right, hence it generates a payoff of 3 in the best-case

scenario, and there may also be a worst-case scenario in which it gets it wrong and generates

a null payoff. An inconsistent choice, by contrast, leads to a null payoff for sure. Therefore all

inconsistent choices are eliminated, and in A1 remain all consistent strategies. In the second

round, the sender draws the conclusions from consistence (and the receiver is inactive). If

9We adopt this nice compact representation of rounds of elimination from Schipper and Li (2018).
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Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

YY ✓ ✓ • × (2.2) • •
2 S YB ✓ × (2.3) ✓ • × (2.2) •

BB × (2.1) • × (2.1) • • ✓

3 R a, b (3.1) a (3.2) b (3.1) a b c

YY ✓ × (4) • × • •
4 S YB ✓ × ✓ • × •

BB × • × • • ✓

Table 3: Iterated Elimination procedure for the monotonic masquerade. For receiver, we write
surviving actions following each message (column) at the corresponding round. For each type of
sender, • denotes a message that is not available, × an eliminated message, and ✓ a surviving
message. Type BB is framed to denote that it is satisfied. Numbers in parenthesis indicate the
step of reasoning that leads to keep/eliminate the corresponding action(s)/message.

she is of the satisfied type, BB, she can obtain 3 for sure by fully disclosing, whereas any

other message may lead to at least one other consistent actions, and therefore has a worst-case

outcome of 0. Therefore, full disclosure is the only undominated message. If she is of an envious

type, Y Y or Y B, then full disclosure leads to 0 for sure, whereas silence can lead to a consistent

receiver action that pays off 3. Therefore full disclosure is dominated. Among vague messages,

envious types must also eliminate messages that cannot lead to a positive payoff action. Here,

it is dominated for type Y B to pick Y as all receiver actions that are consistent with Y give a

null payoff to Y B. In the third round, only the receiver is active, and she updates her possible

interpretations of each message based on the former round of elimination by the sender. Silence

can only be used by Y Y and Y B since BB is satisfied and should fully disclose, so action c

is eliminated. Message Y can only be sent by Y Y since only Y B could possibly send it but

prefers the dominating strategy of being silent. So b is eliminated following Y . B can only

be sent by Y B because BB is satisfied, so only b survives. Finally, in the last round, type

Y Y sender concludes that she should not use Y as the receiver would unmask her (0 in every

possible scenario), whereas she can get 0 or 3 by playing silence.

The reasonings we have illustrated for Game 1 are common to all games in our class, and

we can in fact decompose the first three rounds of the iterated deletion procedure in several

independent steps within rounds as follows. Some of these steps are very natural. For example,

receiver is consistent, satisfied types fully disclose, envious types do not.

Round 1. M1 = M0 and A1 is the set of consistent receiver strategies.

To describe the next round, we introduce the notion of advantageous obfuscation. A vague

message m is advantageous for an envious type t if there exists a consistent interpretation of

this message t′ ∈ E(m) such that t → t′. For instance, in Game 1, it is advantageous for the
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sender of type Y B to send message B but not to send message Y . Note that remaining silent

is always advantageous. Intuitively, an envious sender who understands that the receiver is

consistent should only send advantageous messages.

Round 2. A2 = A1, and M2 is the set of sender strategies in M1 that satisfy all of the

following:

(2.1) If t is satisfied, then µ(t) is fully disclosing.

(2.2) If t is envious, then µ(t) is vague.

(2.3) If t is envious, then µ(t) is advantageous for t.

Round 3. M3 = M2 and A3 is the set of receiver strategies in A2 that satisfy all of the

following:

(3.1) If m is a vague message in M2(T ), then α(m) /∈ a∗(Sat).

(3.2) If m is a vague message in M2(T ), and m is not advantageous for t, then α(m) ̸= a∗(t).

4 Experimental Design

Our experiment consists of a collection of sender-receiver games. In each of these games, the

sender observes two cards, each of which is either yellow, Y , or blue, B. She chooses which

cards to reveal, if any. The receiver observes the cards revealed by the sender, and then takes

a decision a, b or c.

Subjects were first given written instructions and had to fill a comprehension test.10 Then

they played 20 or 30 rounds of a fixed sender-receiver game preceded by two rounds of practice.

At the beginning of a session, each subject was randomly assigned a role, labeled as player 1

(sender) or player 2 (receiver), for the whole session. At the end of each round, both players in

every pair were given full feedback (cards of the sender, action of the receiver and payoffs) about

their interaction. Senders and receivers were then randomly rematched for the next round.11

The 21 experimental sessions were conducted at the Experimental Laboratory in Ecole

Polytechnique, France, with a total of 354 subjects who were mostly science students from

Ecole Polytechnique and ENSTA, two French engineering schools, and some administrators at

Ecole Polytechnique. The final payment of each subject was the sum of a 5 euros show-up fee

and a variable payment based on her total score in the games she played. The average variable

10The english translation of the instructions and comprehension test, corrected orally by the experimentalist,
are given in Appendix G. All decisions were taken on computers and screenshots are provided in Appendix F.

11We did not use a perfect stranger matching process, so rematch was in principle allowed. On average, over
all sessions, a given pair of subjects was formed 3.9 times. Each combination of two subjects and two cards was
formed 2.3 times on average.
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payment per subject was 15 euros. In some sessions, subjects had to go through an additional

belief-elicitation task and could earn up to 4 more euros. For each session, Table 5 details the

number of rounds played, the number of subjects and the value of a point in euros (Exchange

Rate). The last column of the Table states whether beliefs were elicited or not.

Information and messages. In our design, the type set is given by the feasible combinations

of cards T = {Y Y, Y B,BB}. The three combinations were drawn with equal probabilities by

the computer and independently in each round. The sender was allowed to reveal both cards,

none or any one of her choice. The corresponding message space isM = {∅, Y, B, Y Y, Y B,BB},
with obvious interpretations. The evidence structure is depicted in Figure 1 in Section 3.

A subject fully discloses, abbreviated as FD, if she reveals both cards, partially discloses,

abbreviated as PD, if she reveals one card, and remains silent if she reveals no card. We also

refer to silence and PD as vague messages.

Payoffs and masquerading graphs. In each session, subjects could at all time see two

matrices showing sender and receiver payoffs in the game they were playing. The payoff matrix

of the receiver was the same across all sessions, whereas the payoff matrix of the sender was

the unique part of the design that varied across sessions. Examples of the matrices we used are

given by Table 1 and Table 2 in Section 3. To each game corresponds a particular masquerade

relation, and Figure 2 shows all the masquerading graphs that we used.12 Table 5 shows the

masquerading graphs and sender payoff matrices associated to each of the 21 experimental

sessions. Note that the same sender payoff matrix was sometimes used in several sessions.

Over all these sessions, we collected data for 3690 one-shot sender-receiver games. Table 4

shows the distribution of observations across acyclic and cyclic games, envious and satisfied

senders.

Envious Satisfied Total
Acyclic 1039 821 1860
Cyclic 1372 458 1830
Total 2411 1279 3690

Table 4: Distribution of the data across game and sender categories.

Beyond cyclic and acyclic, it is useful to classify our games into four categories: simple

acyclic games with a single envious type (Acyclic 1: 580 observations), acyclic games with

12A systematic exploration of all possible graphs on three types would have required many more sessions. In
total, there are 26 = 64 possible graphs, and only 36 if we take symmetries into account (that is, make Y Y and
BB equivalent, and keep Y B distinct as required by the structure of the set of evidence). When selecting the
graphs for our experiments, we aimed at having a similar number of acyclic and cyclic graphs. We also wanted
graphs which exhibited various number of envious types and arrows.
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two envious types (Acyclic 2: 1280 observations), cyclic games with a FRE (Cyclic FRE: 650

observations), and other cyclic games (Cyclic other: 1180 observations). For each session,

Table 5 reports the category of the game used, and whether this game has a FRE.
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Cyclic Games

Figure 2: Masquerading graphs and game categories in the experiment. Empty nodes are for
envious types, filled nodes for satisfied types.

Belief elicitation. We elicited the beliefs of subjects in 8 of the 21 sessions (4 with acyclic

games, 4 with cyclic games, 136 subjects in total). In each of these sessions, we elicited beliefs

once, after the final round of play. Each sender was asked to indicate the frequency with which

she thought that each action was played after each possible message. Each receiver was asked

to indicate the frequency with which she thought that each card combination had been the true

one given each possible message.13 We then compared the reported frequencies to the empirical

frequencies to remunerate subjects.14 A subject whose beliefs exactly matched the empirical

frequency could earn 4 euros. Appendix D shows average reported beliefs and true empirical

frequencies.

13Appendix F reports the tables used for beliefs elicitation, that were filled in computers.

14We used the quadratic scoring rule s(f, fe) = 16

(
1− 1

18

∑18
k=1 δk

(
fk−fe

k

100

)2
)
, with fk and fe

k the believed

and empirical frequencies in square k of the elicitation tables. If a message had never occurred in a session, the
indicator δk was set to 0 for the squares corresponding to this message. Under this rule, subjects maximized
their expected payoff by reporting their true subjective beliefs.
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Session Masquerade Sender Payoff Game Category FRE Rounds Subjects Exch. Rate Beliefs

1
(

3 0 0
0 3 0
0 3 0

)
Acyclic 1 Yes 20 18 0.20 No

2
(

0 0 3
0 3 0
0 0 3

)
Acyclic 1 Yes 20 20 0.25 No

3
(

3 0 0
3 0 3
0 0 3

)
Acyclic 1 Yes 20 20 0.20 No

4
(

0 3 0
0 0 3
0 0 3

)
Acyclic 2 Yes 20 20 0.20 No

5
(

0 3 0
0 0 3
0 0 3

)
Acyclic 2 Yes 20 20 0.25 Yes

6
(

0 3 0
0 0 3
0 0 3

)
Acyclic 2 Yes 20 20 0.25 Yes

7
(

0 3 3
0 0 3
0 0 3

)
Acyclic 2 Yes 20 18 0.25 No

8
(

0 3 3
0 0 3
0 0 3

)
Acyclic 2 Yes 20 20 0.25 Yes

9
(

0 3 3
0 0 3
0 0 3

)
Acyclic 2 Yes 20 14 0.25 Yes

10
(

3 0 0
3 0 0
3 3 0

)
Acyclic 2 Yes 20 16 0.25 No

11
(

0 3 0
3 0 0
0 0 3

)
Cyclic other No 20 20 0.66 No

12
(

0 3 0
3 0 0
0 0 3

)
Cyclic other No 20 18 0.25 Yes

13
(

3 0 0
0 0 3
0 3 0

)
Cyclic other No 30 10 0.20 No

14
(

3 0 0
0 0 3
0 3 0

)
Cyclic other No 20 14 0.25 Yes

15
(

0 3 0
3 0 3
0 3 0

)
Cyclic other No 20 20 0.25 No

16
(

0 3 0
0 0 3
3 0 0

)
Cyclic other No 30 10 0.20 No

17
(

0 3 0
0 0 3
3 0 0

)
Cyclic other No 20 16 0.25 No

18
(

0 0 3
0 3 0
3 0 0

)
Cyclic FRE Yes 30 10 0.20 No

19
(

0 0 3
0 3 0
3 0 0

)
Cyclic FRE Yes 20 20 0.25 No

20
(

0 0 3
0 3 0
3 0 0

)
Cyclic FRE Yes 20 16 0.25 Yes

21
(

0 0 3
0 3 0
3 0 0

)
Cyclic FRE Yes 20 14 0.25 Yes

Table 5: Summary of sessions.
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5 Theoretical Predictions and Empirical Strategy

Our empirical analysis is divided in two parts. The first part (Section 6) is descriptive, and

seeks to describe the behavior and performance of players according to game, sender type, and

message categories. The second part (Section 7) compares the different models of strategic

behavior introduced in Section 3. Before presenting our results, we discuss the predictions of

these models for the games of the experiment, our empirical strategy and hypotheses for this

second part.

PBE. All of our games have multiple PBE and, more generally, PBE makes few testable

predictions that can be checked across all of our games. While this makes it difficult to assess

the extent to which PBE explains the data, we can provide a comparison of empirical payoffs

with the range of PBE theoretical payoffs for each of our games. Next, PBE assumes receiver

consistency, which also corresponds to the first round of elimination in IEODS. In our games,

this implies that receivers act consistently in the sense that they never pick the action associated

with a type of the sender which is ruled out by the evidence they have received. We check to

which extent the data satisfies this assumption. Finally, we also try to assess the extent to

which players best-respond to their beliefs, and the extent to which they form accurate beliefs

by looking at the beliefs we elicited in some sessions. Overall, the design of our experiment and

the multiplicity of equilibria make it difficult to test for PBE, so these results are suggestive at

best. The other solution concepts, by contrast, provide more verifiable implications.

FRE. It seems natural to focus on FRE as a prediction when one exists. However, this does

not eliminate multiplicity, as an envious sender could send multiple vague messages, or fully

disclose in a FRE. But FRE still make some testable predictions across games. The first predic-

tion is that receivers must be fully accurate, that is, always play the optimal action associated

to the true type of the sender. The other two predictions correspond to the characterization in

Proposition 1.

Observation 1. If the players play according to FRE, receivers must be fully accurate and

always act skeptically, and senders must always send messages for which they are a worst-case

type.

This provides us with three natural indicators for FRE. We use them to check the extent

to which participants play according to FRE in all sessions where a FRE exists. This includes

all sessions in which an acyclic game is played, as well as sessions 18 to 21 in which the game

is cyclic but has a FRE (it is Game 3 in Table 2).

IEODS. The iterative elimination described in Section 3 makes simple predictions on the

behavior of players at each round based on the decomposition we obtained. These predictions
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can be described in general terms as follows. In all games of the experiment, IEODS finishes

in four rounds or less.

Round 1 Receiver acts consistently, i.e. never picks an action that corresponds to a type that

has been ruled out by evidence.

Round 2.1 Satisfied sender fully discloses.

Round 2.2 Envious sender sends a vague message.

Round 2.3 Envious sender obfuscates advantageously, i.e. sends a vague message whose con-

sistent interpretations can possibly lead to a positive payoff.

Round 3.1 If possible, receiver never attributes a vague message to a satisfied sender.

Round 3.2 If possible, receiver never attributes a vague message to an envious sender for

whom this message is not advantageous.

Round 4 If possible, envious sender only sends vague messages that can possibly lead to a

positive payoffs given the interpretations of a round 3 receiver.

Furthermore, there is a natural filiation in the chain of reasonings that lead to the different

rounds as summarized in Figure 3. We do not expect different steps of reasoning in the same

round to all require the same level of sophistication. For example, elimination rounds 2.1 and

2.2 seem to require less sophistication than round 2.3. Similarly, it seems possible for a receiver

to follow a chain of reasonings leading him to perform round 3.1, but not 3.2.

Receiver Sender Receiver Sender

Round 1

Round 2.1

Round 2.2

Round 2.3

Round 3.1

Round 3.2

Round 4

Figure 3: Decomposition of IEODS reasoning.

In Table 9 and Table 10 of Appendix B, we provide a game by game description of surviving

actions and messages after each round of elimination. This leads to the following observation

on the relationship between FRE and IEODS.
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Observation 2. In acyclic games, there exists a strategy profile supporting a FRE that survives

IEODS. In simple acyclic games (Acyclic 1), all strategy profiles that survive IEODS support a

FRE, but it is not the case in other acyclic games (Acyclic 2). In our cyclic game with FRE,

all strategy profiles that support a FRE are eliminated.

We explore three ways in which IEODS can help understand the data. First, we assess the

extent to which IEODS predicts behavior in our games by looking at the fraction of sender

and receiver observations that pass all rounds of elimination. Second, we use IEODS as a

model of strategic thinking and explore the ability of players to perform the different rounds of

elimination. To do this we look at failure rates for the different steps of reasoning, i.e. the rate

at which players failed to pass a step, when failure was possible. We consider all steps in the

decomposition of IEODS, thereby providing a finer exploration of depth of reasoning in these

games. Finally, we explore the extent to which IEODS can provide a refinement to PBE by

comparing the range of payoffs predicted by PBE in strategies that survive IEODS to empirical

payoffs.

6 Overview

In this section, we provide an overview of the data through an examination of average payoffs,

and a description of sender and receiver behavior.

6.1 Gains from Communication

To get a general sense of the data, we start by looking at the average scores of senders and

receivers, as described on Figure 4. In every game, the receiver gets a payoff of 3 if she takes

her unique optimal action, and 0 otherwise. Each of her three possible actions is equally likely

to be optimal at the outset, so her average score in the absence of communication would be 1.

Hence, we say that receivers gain from communication whenever their average payoff is above

1. The average payoff of the sender if the receiver chooses her action according to the uniform

distribution is between 1 and 4/3, depending on the game. This range is depicted as the red

hatched region in Figure 4. We say that senders gain from communication if their average

payoff is above 4/3, and lose from communication if their average payoff is below 1.15

According to these definitions, both senders and receivers gain from communication. Sat-

isfied senders gain but envious senders lose from communication. The loss of envious senders

comes mainly from acyclic games. Receivers gain from communication regardless of the pre-

cision of the message they receive, and of cyclicality. But their scores are lower after vaguer

15The absence of communication is a possible benchmark. The reader interested in how subjects perform
relative to the best and the worst equilibria in each game can go to Appendix C. It presents, for each session,
the range of equilibrium and empirical payoffs.
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messages, and in cyclic games. As suggested by theory that links acyclicity to existence of FRE,

acyclic games favor receivers and harm envious senders. The poorer performance of receivers

when facing vague messages, even in acyclic games, however, is not compatible with FRE.

Indeed, while FRE does not preclude the use of vague message, it implies that the receivers

should guess the type of the sender anyway.

The fact that receivers obtain an average payoff close to 3 when they face full disclosure con-

firms that the subjects understood that senders only could show cards they had truly observed.

The fact that satisfied senders obtain an average payoff close to 3 both in cyclic and acyclic

games shows that subjects managed to convey information effectively when their interests were

aligned with those of the receivers.

Sender
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∅
0
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Figure 4: Sender and receiver average payoffs.

6.2 Receivers

Are receivers consistent? Both PBE and the first round of IEODS require consistent re-

ceiver strategies. Overall, excluding silence, after which any action is consistent, almost 99% of

receivers decisions are consistent whether facing FD or PD, and whether the game is cyclic or

acyclic.

The fact that receivers take evidence into account can also be seen by looking at the receivers

beliefs, reported in Appendix D. Following full disclosure, the average probability that receivers

put on the type disclosed was above 99% for each of the FD messages. Elicited beliefs are also

consistent with evidence for PD messages, as can be seen in Table 11 of the appendix: receivers

never put any weight on the type of the sender that is ruled out by evidence.
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How accurate are receivers’ decisions? We say that a receiver’s decision is accurate if it

corresponds to the optimal action associated with the true sender type. Overall, decisions are

accurate 71% of the time, confirming that receivers benefit from communication. The accuracy

rate jumps to 80% in acyclic games, which is closer to the prediction of FRE. In cyclic games,

receivers achieve an accuracy rate of only 62%. Following full disclosure, receivers have an

accuracy rate of 99% over all games. Vague messages lead to lower accuracy rates, irrespective

of cyclicality. In acyclic games, the accuracy rates following partial disclosure is 76%, and it is

58% after silence. A receiver who would choose randomly with uniform weights after considering

the evidence would obtain accuracy rates of 50% after partial disclosure, and 33% after silence.

These rates are below the performance of receivers in acyclic games, but comparable to their

performance in cyclic games, with 54% after partial disclosure, and 44% after silence. If we

isolate cyclic games with a FRE (sessions 18 to 21), we obtain accuracy rates of 60% following

partial disclosure, and 51% following silence. Interestingly, while receivers do perform better

in these games than in other cyclic games, they perform less well than in acyclic games despite

the existence of a FRE.

How long does it take receivers to act? Receivers’ response times (Figure 5) yield two

interesting observations. First, the response time in cyclic games is higher than in acyclic games

whenever the message is vague, which suggests that cyclic games require more thinking on the

receiver side. Second, response times are non-monotonic in the amount of disclosure: they are

lowest for full disclosure, and highest for partial disclosure. On the face of it, this observation

is slightly surprising as receivers face more possible responses after a silent message, than after

partial disclosure. It suggests that deciphering the intentions of the sender following partial

disclosure requires more thinking. This increased difficulty, however, does not translate into

more mistakes, as the accuracy data show.

Receiver

All AcycCyc Acy Cyc
FD

Acy Cyc
PD

AcyCyc
∅

0
1
2
3
4
5
6
7
8
9
10
11
seconds Sender

All Sat Env FD PD ∅
Env

seconds

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 5: Sender and receiver average response times.
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6.3 Senders

What do senders disclose? The disclosure strategies of senders are illustrated in Figure 6.

Satisfied types overwhelmingly fully disclose whether the game is cyclic or acyclic. This cor-

responds to round 2.1 of IEODS: provided that receivers are consistent, fully disclosing when

satisfied obviously dominates any other sender strategy. Envious senders, on the other hand,

understand that they need to obfuscate in order to stand a chance of obtaining their first-best

payoff. Indeed, their frequency of full disclosure is only 5%. This corresponds to round 2.2

in IEODS. In acyclic games, envious types do not use full disclosure more frequently than in

cyclic games (resp. 5.1% and 4.5%). This shows that envious senders try to take advantage of

receivers’ possible lack of skepticism by obfuscating even though this would be useless in FRE.

But, if receivers sometimes fail to be skeptical following vague messages (as the data indicate),

it is better to be vague. Finally, envious senders use silence more often than partial disclosure

(resp. 60% and 40%, conditional on using vague messages), both in cyclic and acyclic games.
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Figure 6: Sender disclosure.

How long does it take senders to act? Figure 5 shows that the response times of envious

senders are higher than those of satisfied senders. In addition, the response times of envious

senders exhibit the same non-monotonicity in the amount of disclosure as those of receivers:

they are highest for partial disclosure, and lowest for silence and full disclosure. Envious senders

rarely fully disclose. Interestingly, partial disclosure requires more thinking time than silence,

which might explain why envious senders often prefer silence to partial disclosure.
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7 Models of Behavior

PBE. The experiment was not designed to test PBE, and there are few metrics by which we

can do so. Furthermore, all of our games have multiple equilibria. A minimal test of PBE is

provided by the fraction of inconsistent receiver actions, which should by assumption be 0. In

the data it is 0.62% if we consider all observations, and 1% if we exclude observations in which

the sender remained silent. Payoffs provide another metric. In Appendix C, we show for each

session a plot of the empirical payoffs and the range of PBE payoffs. While PBE appears to

be rejected for receiver payoffs in sessions 15 and 17, for BB sender payoffs in session 7, and

for YB sender payoffs in session 18, the range of PBE payoff predictions is generally consistent

with the data, and otherwise not very far off. But of course, this is a very weak test, and the

range of possible payoffs is often the full range of possible payoffs.

We can also get a rough idea of the validity of PBE by looking at elicited beliefs, as PBE

predicts that beliefs should be accurate and players should best respond to their beliefs. In

Appendix D, Table 11 and Table 12 show reported beliefs of receivers and senders for the

experimental sessions in which we elicited them. While this data does show some very strong

discrepancies between average beliefs and actual frequencies in some cases,16 there are few of

these and, for the receiver, they tend to correspond to messages that the senders have very

rarely used. For more moderate differences, one patterns can be noticed that is suggestive of a

systematic departure from PBE: senders tend to largely underestimate the degree of skepticism

of receivers in acyclic games, especially following the PD message that certifies the two envious

types. In Appendix E, we report the share of individual receiver and sender choices that were

best responses to their reported beliefs. This share is between 65% and 98% for all sessions.

FRE. When a FRE exists, it is a focal prediction. However, FRE does not preclude mul-

tiplicity, as senders are indifferent across all messages for which they are a worst-case type.

Among our games, all acyclic ones have a FRE, as well as one of our cyclic games. Based

on Observation 1, we propose three metrics to assess whether FRE is matched by empirical

behavior for these games. The first metric is the accuracy rate of the receivers. The second

metric is the rate of skeptical choices by the receivers. The third metric is the rate of sender

observations in which a sender chose a message for which she was a worst-case type.

We present these measures in Table 6 for all game categories for which a FRE exists. For

acyclic games, at least 70% of observations match the prediction of FRE on all but one metric:

accuracy following silent messages. The distance to FRE for this metric is mainly due to acyclic

games with two envious types. Indeed, for simple acyclic games with a single envious type, 80%

of all observations match FRE on one metric, and more than 93% on all others. Thus, according

to our measures, FRE is a good prediction for acyclic games with a single envious type.

16The highest difference is 53 percentage points in session 12.
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All Games
Acyclic Acyclic 1 Acyclic 2 Cyclic FRE with FRE

% accuracy 80.22% 95.86% 73.12% 71.69% 78.01%
– FD 99.52% 99.74% 99.34% 97.10% 98.92%

– PD 75.65% 81.82% 73.81% 60.00% 73.38%

– silence 57.85% 93.69% 50.38% 51.46% 55.78%

% skeptical 88.39% 98.45% 83.83% 54.31% 79.56%

– vague 79.32% 95.98% 75.30% 22.73% 64.19%
– PD 90.05% 93.18% 89.12% 90.77% 90.16%

– silence 72.94% 98.20% 67.67% 8.41% 52.00%

% wct message 82.26% 98.28% 75.00% 53.23% 74.74%
– satisfied 95.98% 97.39% 94.75% 100.00% 96.87%

– envious 71.41% 100.00% 64.73% 26.74% 58.66%

Table 6: FRE metrics. If FRE was satisfied, all figures should be 100%.

For more complicated acyclic games with two envious types, the picture is more contrasted.

While at least 70% of the data is consistent with FRE on all but three metrics, the accuracy

rate following silence is only 50%, which is better than chance (33%) for a receiver that con-

siders all types to be possible after silence (round 1 receiver in the IEODS procedure), but

undistinguishable from chance for a round 3 receiver who eliminates the single satisfied type

and attributes the silent message to either of the two envious ones. The contrasted performance

of FRE for these games is confirmed by elicited beliefs (see Appendix D), which show that at

the end of the session, while receivers generally put more weight on skeptical interpretations of

messages, they are far from attributing each message to a single type (FRE), and while senders

tend to expect the skeptical action with higher probability, they are far from putting all weight

on this action.

Finally, for cyclic games with a FRE, it is safe to say that FRE is largely rejected by

the data, with compliance rates below 60% on most metrics, and as low as 8% for skepticism

following silence. The low degree of skepticism following silence is especially meaningful: the

only strategy that can dissuade Y Y and BB to pool on the silent message in this game is to

skeptically attribute it to the satisfied type Y B, a prediction that is clearly not matched by

empirical behavior. This is confirmed by elicited beliefs which show that receivers put little

weight on type Y B, and senders little weight on receiver playing b.

IEODS. First, we assess the extent to which IEODS is matched by the data. Table 7 shows

that the fraction of receiver observations that are consistent with IEODS is 96.58%, while it

is 85.81% for sender observations. Overall, IEODS appears to predict behavior quite well. In

Table 8, we break down these figures according to our game categories. The first thing to notice
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is that IEODS provides a good explanation of the data for all game categories, as it explains at

least 90% of receiver data and 80% of sender data in each category. Note that the discrepancy

between sender data and receiver data is persistent suggesting that reasoning through IEODS

is harder for senders than for receivers in all of these games. To understand Table 8 further, it

is useful to refer to Observation 2. In simple acyclic games (Acyclic 1), more than 90% of both

sender and receiver data satisfy IEODS. For these games, IEODS uniquely selects a particular

FRE (see Appendix B). Hence, in this case, IEODS makes more precise predictions than FRE

since it pins down the separating equilibrium strategy that sender is using. For other acyclic

games, while there exists a FRE strategy profile that survives IEODS, this is not the unique

prediction of IEODS. Indeed, we found in the previous paragraph that FRE indicators are not

as good for these games. In cyclic games with a FRE, no FRE strategy profile survives IEODS

in our games, and indeed, the data is inconsistent with FRE for these games as we saw in

Table 6, whereas IEODS remains a good match.

Second, we consider IEODS as a model of strategic thinking, and look in more details at

the different rounds of elimination. Table 7 shows the fraction of the data that fail each step

of each round of elimination. These figures suggest that players largely perform all steps of

IEODS even though it might be slightly more difficult for senders than for receivers. However,

this picture is misleading as there are many circumstances in which all possible decisions of a

player comply with a given step of reasoning. For example, a receiver confronted with silence

cannot be inconsistent, or a satisfied sender cannot fail rounds 2.2, 2.3 or 4. Also, round 4

eliminations occur in some games, but not in others. To get a better picture of whether players

are able to perform the different parts of the IEODS reasoning, we measure the failure rates for

each step of reasoning as given by the fraction of observation failing a given step when failure

was possible. These figures, reported in Figure 7, provide a very different picture. For example,

when confronted with a situation in which failing round 4 was possible, senders passed round

4 only 66% of the time. The general pattern confirms the immediate intuition that some steps

are more difficult than others. It also shows that difficulty is not homogeneous within rounds.

Just as intuition would suggest, steps 1, 2.1, 2.2 and 3.1 appear ‘easier’ to perform than steps

2.3, 3.2 and 4.

Finally, we examine IEODS as a refinement of PBE by looking at PBE that only use

strategies that survive IEODS, and denote this refinement as IEODS+PBE. In simple acyclic

games, as already noticed, this uniquely selects a particular FRE, and predicts a strategy profile

that fits the data very well. To assess the usefulness of this refinement more generally, we look

at how IEODS+PBE restricts the payoff predictions for sender types and receiver compared to

PBE. This is shown in Figure 8 and Figure 9 in Appendix C. Overall, in all games, IEODS+PBE

refines predictions close to average empirical payoffs.
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Receiver Sender

Fail R1 0.62% 8.58% Fail R2
1.76% Fail R2.1
3.11% Fail R2.2
3.71% Fail R2.3

Fail R3 2.79% 5.61% Fail R4
Fail R3.1 1.54%
Fail R3.2 1.25%

Pass IEODS 96.58% 85.81% Pass IEODS

Table 7: Explaining the data with IEODS: each figure in the table shows the fraction of all
3690 observations that fail or pass the corresponding round.

Acyclic 1 Acyclic 2 Cyclic FRE Cyclic other

Sender 92.07% 80.70% 80.15% 91.36%
Receiver 98.45% 97.03% 93.85% 96.69%

Table 8: Fraction of observations that pass all rounds of IEODS by game category.

Receiver Sender Receiver Sender

Round 1
1.01%
(0.2)
#2281

Round 2.1
5.08%
(0.61)
#1279

Round 2.2
4.77%
(0.43)
#2411

Round 2.3
10.27%
(0.83)
#1334

Round 3.1
4.49%
(0.57)
#1270

Round 3.2
16.79%
(2.26)
#274

Round 4
33.39%
(1.90)
#620

Figure 7: Failure rates for the different rounds. The first number is the rate in percentage, the
second the standard deviation in percentage points, and the third the number of observations.
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8 Conclusion

We propose a novel experimental study of disclosure games. Our design is innovative in its joint

treatment of multiple games with different strategic properties. This is made possible by our

graphical representation of sender’s incentive which forms the basis for the definition of game,

type and message categories that facilitate the discussion. We show that a non-equilibrium ap-

proach based on the iterated elimination of obviously dominated strategies generates meaningful

restrictions that are well matched by the data. This procedure can also serve as an equilibrium

selection device that increases the predictive power of PBE in a way that is consistent with

empirical behavior in the lab for our class of games.

We find the use of IEODS as a non-equilibrium model of strategic thinking appealing because

it does not rely on excessive player rationality. In particular, as pointed out in Li (2017) and

Zhang and Levin (2015), it does not require contingent thinking or Bayesian updating by the

players. In the games of our experiment, as in the game of Schipper and Li (2018), IEODS

makes the same predictions as their concept of cautious rationalizability. Predictions do differ

in some disclosure games yet to be studied in the lab.

Appendix

A Theoretical Appendix

FRE. Proceeding as in Hagenbach et al. (2014), we say that (µ, α, β) is a PBE with extremal

beliefs if, in addition, it satisfies the property that for every off-path message m /∈ µ(T ), βm

puts probability 1 on a single type. Hagenbach et al. (2014) prove that, under Assumption 1, a

FRE (µ, α, β) with extremal beliefs exists if and only if every certifiable subset of types has a

worst-case type. The following lemma shows that the restriction to extremal beliefs is without

loss of generality for our class of games.

Lemma 2. If (µ, α, β) is a PBE in pure strategies, then there exists a belief system β′ such that

βm = β′
m for every on-path message m, and such that (µ, α, β′) is a PBE with extremal beliefs.

Proof. Consider a PBE (µ, α, β). Let m be an off-path message. Note that, by Assumption 2,

any action a /∈ a∗(E(m)) yields a null payoff, while for any belief concentrated on E(m), there

exists an action in a∗(E(m)) that yields a strictly positive payoff. Therefore there exists t ∈ E(m)

such that α(m) puts probability one on a∗(t). Then we can define β′
m as the belief that puts

mass 1 on t. Let β′ be the belief system obtained by doing this operation for every off-path

message m, and by letting β′
m = βm for the remaining messages. It is easy to see that (µ, α, β′)

is a PBE with extremal beliefs.
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This proves the following proposition.

Proposition 2. A FRE in pure strategies exists if and only if every certifiable subset of types

admits a worst-case type.

Furthermore, the proposition can be extended to mixed strategy equilibria as a corollary of

the following result.

Proposition 3. There exists a mixed strategy FRE if and only if there exists a pure strategy

FRE.

Proof. The other implication being obvious, assume that there exists a mixed strategy FRE. In

such an equilibrium, each type mixes over a set of messages. These sets do not overlap, since

the equilibrium is separating. And following any of these messages, which is on-path for type t,

the receiver takes action a∗(t). We can pick one message mt in the set of messages sent by type

t, and modify the strategy of the sender to sending mt with probability 1 when she is of type t.

The other messages become off path, but we assume that the receiver reacts to this messages

with the belief that they come from t with probability 1, and thus picks action a∗(t). These

beliefs are consistent, and because we started from an equilibrium, they deter other types from

using the same message.

Consider the messages that are off path in the initial equilibrium. Upon seeing such a

message m in the initial equilibrium, the receiver forms a belief βm with support in E(m).

Then, given Assumption 2, her mixed response can only be to mix in some way between actions

a∗(t′) corresponding to types t′ ∈ E(m) such that βm(t
′) > 0.

Suppose first that E(m) admits a worst-case type. Then we can change the belief βm to a

belief that puts probability 1 on a worst-case type, and that would deter any type of the sender

able to send m from deviating to m.

Suppose next that E(m) has no worst-case type. Then any consistent belief following m

leads the receiver to play some action a∗(t′) with t′ ∈ E(m) with strictly positive probability.

Since E(m) has no worst-case type, there exists a type t ̸= t′ in E(m), that strictly prefers a∗(t′)

to a∗(t), and by Assumption 3, this type t must also prefer to a∗(t) any mixture over consistent

actions that puts strictly positive probability on a∗(t′). But this in turn implies that βm could

not have supported a FRE in mixed strategies.

Finally, we prove the characterization of FRE in Proposition 1 which is easily extended to

mixed strategy equilibria.

Proof of Proposition 1. Suppose that (ii) is satisfied. Every message is interpreted as worst-

case type, so the sender has no incentive to deviate from the separating strategy. It is easy to

construct the extremal belief system that supports the receiver strategy as an equilibrium, so

we have a FRE.
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Now assume that the sender follows the strategy prescribed by (ii) but that the receiver

does not interpret every message skeptically. Then, there exists a message m after which the

receiver plays a∗(t′) where t′ is such that t → t′ for some type t in E(m). Type t will prefer

sending m than sending the prescribed µ(t) that uncovers him, making FRE impossible.

Now suppose that the receiver interprets every message skeptically, that µ(·) is separating
(otherwise, we trivially cant’ have a FRE) but that t is not a worst-case type of µ(t). Then,

for (µ, α, β) to be a FRE, it must be the case that α(µ(t)) = a∗(t). This interpretation is not

skeptical, a contradiction.

IEODS. Next we prove the decomposition that characterizes the first rounds of elimination

in Section 3.

Proof of Round 1. M1 = M0, because, when all actions are available for the receiver, all

messaging strategies lead to the same possible scenarios.

By Assumption 2, the receiver gets a null payoff whenever she plays an inconsistent action.

By contrast, any consistent action a∗(t) yields a positive payoff in the scenario in which the

message comes from t, and 0 in all other scenarios. Hence a strategy that plays an inconsistent

action following some message is obviously dominated by one that replaces this action by

a consistent one and is otherwise identical to the original strategy. On the other hand, a

consistent strategy cannot be obviously dominated by any other as, following every message,

there is a scenario in which the action prescribed by this strategy is the only one that yields a

positive payoff.

Proof of Round 2. A2 = A1 because M1 = M0.

Consider a satisfied type t of the sender. Full disclosure yields to a∗(t) by consistency

(Round 1), and this is preferred to any other action the receiver may take by Assumption 3.

Since any vague message can lead to a scenario in which the consistent receiver chooses one of

these actions, vague messages are obviously dominated.

Next, consider an envious type t. Full disclosure leads to a∗(t) which yields a null payoff by

Assumption 3. By contrast, silence may lead to any possible action by a consistent receiver,

one of which with a strictly positive payoff, and others with null payoff. Therefore silence

obviously dominates full disclosure, and is obviously undominated. If, instead of remaining

silent, t partially discloses with some message m, then either m is advantageous for t, in which

case m is not obviously dominated by silence, or m is not advantageous, in which case m yields

a null payoff and is obviously dominated by silence.

Proof of Round 3. Satisfied types cannot send vague messages so choosing the action a∗(t)

associated with a satisfied type t must lead to a null payoff, and if a message is still in the

set of messages M2(T ) sent after round 2, then there must exist an envious type s for whom
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m is advantageous, implying that choosing the action a∗(s) yields a positive payoff in at least

one possible scenario, so a∗(t) is obviously dominated by a∗(s) following m. Similarly, if is

not advantageous for t to send m, then choosing a∗(t) yields a null payoff and is obviously

dominated by a∗(s).
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B Game by Game IEODS

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

Y Y × (2.1) × (2.1) • ✓ • •
2 S Y B × (2.1) × (2.1) × (2.1) • ✓ •

BB ✓ • ✓ • • × (2.2)

3 R c (3.1) a, b c (3.1) a b c

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

YY ✓ × (2.3) • × (2.2) • •
2 S Y B × (2.1) × (2.1) × (2.1) • ✓ •

BB × (2.1) • × (2.1) • • ✓

3 R a (3.1) a, b b, c a b c

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

Y Y × (2.1) × (2.1) • ✓ • •
2 S YB ✓ ✓ ✓ • × (2.2) •

BB × (2.1) • × (2.1) • • ✓

3 R b (3.1) b (3.1) b (3.1) a b c

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

YY ✓ ✓ • × (2.2) • •
2 S YB ✓ × (2.3) ✓ • × (2.2) •

BB × (2.1) • × (2.1) • • ✓

3 R a, b (3.1) a (3.2) b (3.1) a b c

YY ✓ × (4) • × • •
4 S YB ✓ × ✓ • × •

BB × • × • • ✓

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

Y Y × (2.1) × (2.1) • ✓ • •
2 S YB ✓ ✓ × (2.3) • × (2.2) •

BB ✓ • ✓ • • × (2.2)

3 R b, c (3.1) b (3.1) c (3.2) a b c

Y Y × × • ✓ • •
4 S YB ✓ ✓ × • × •

BB ✓ • × (4) • • ×

Table 9: Iterated Elimination procedure for acyclic games. For receiver, we write surviving actions
following each message (column) at the corresponding round. For each type of sender, • denotes a
message that is not available, × an eliminated message, and ✓ a surviving message. Satisfied types
are framed. Numbers in parenthesis indicate the step of reasoning that leads to keep/eliminate the
corresponding action(s)/message.
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Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

YY ✓ ✓ • × (2.2) • •
2 S YB ✓ ✓ × (2.3) • × (2.2) •

BB × (2.1) • × (2.1) • • ✓

3 R a, b (3.1) a, b b, c a b c

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

Y Y × (2.1) × (2.1) • ✓ • •
2 S YB ✓ × (2.3) ✓ • × (2.2) •

BB ✓ • ✓ • • × (2.2)

3 R b, c (3.1) a, b b, c a b c

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

YY ✓ ✓ • × (2.2) • •
2 S YB ✓ × (2.3) ✓ • × (2.2) •

BB ✓ • × (2.3) • • × (2.2)

3 R a, b, c a (3.2) b (3.2) a b c

YY ✓ × (4) • × • •
4 S YB ✓ × × (4) • × •

BB ✓ • × • • ×

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

YY ✓ ✓ • × (2.2) • •
2 S YB ✓ ✓ ✓ • × (2.2) •

BB ✓ • ✓ • • × (2.2)

Round Player Type ∅ Y B YY YB BB

1 R a, b, c a, b b, c a b c

YY ✓ × (2.3) • × (2.2) • •
2 S Y B × (2.1) × (2.1) × (2.1) • ✓ •

BB ✓ • × (2.3) • • × (2.2)

3 R a, c (3.1) a, b b, c a b c

Table 10: Iterated Elimination procedure for cyclic games. For receiver, we write surviving actions
following each message (column) at the corresponding round. For each type of sender, • denotes a
message that is not available, × an eliminated message, and ✓ a surviving message. Satisfied types
are framed. Numbers in parenthesis indicate the step of reasoning that leads to keep/eliminate the
corresponding action(s)/message.
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C Theoretical and Empirical Payoffs

We have computed all equilibrium payoffs for each of our games. The range for these payoffs are

indicated by the grey areas in Figure 8 for sessions with acyclic games and in Figure 9 for sessions

with cyclic games. The multiplicity of equilibrium payoffs comes from both the multiplicity of

equilibrium sender strategies, and from the receiver’s indifferences over consistent actions due to

the uniform probability distribution. The payoffs range of PBE that survive IEODS is indicated

by the striped areas.
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PBE payoffs

IEODS + PBE payoffs

Avg. payoff + 95% CI: 1st half

Avg. payoff + 95% CI: All

Avg. payoff + 95% CI: 2nd half

Figure 8: PBE and IEODS + PBE predictions and actual payoffs for sessions with an acyclic
game. The data points represent average payoffs and 95% confidence intervals over all periods,
the 1st and 2nd half of the sessions.
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Session 11: 2-cyc YY-YB

0

1

2

3

YY YB BB Rec

Session 14: 2-cyc YB-BB

0

1

2

3

YY YB BB Rec

Session 17: 3-cyc

0

1

2

3

YY YB BB Rec

Session 20: 2-cyc YY-BB

0

1

2

3

YY YB BB Rec

Session 12: 2-cyc YY-YB

0

1

2

3

YY YB BB Rec

Session 15: Double-cyc

0

1

2

3

YY YB BB Rec

Session 18: 2-cyc YY-BB

0

1

2

3

YY YB BB Rec

Session 21: 2-cyc YY-BB

0

1

2

3

YY YB BB Rec

Session 13: 2-cyc YB-BB

0

1

2

3

YY YB BB Rec

Session 16: 3-cyc

0

1

2

3

YY YB BB Rec

Session 19: 2-cyc YY-BB

0

1

2

3

YY YB BB Rec

Session 10

0

1

2

3

YY YB BB Rec

PBE payoffs

IEODS+PBE payoffs

Avg. payoff + 95% CI: 1st half

Avg. payoff + 95% CI: All
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Figure 9: PBE and IEODS+PBE predictions and actual payoffs for sessions with a cyclic
game. The data points represent average payoffs and 95% confidence intervals over all periods,
the 1st and 2nd half of the sessions.
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D Average Beliefs

Session 5

Beliefs

YY YB BB

∅ 53.4 46.6 0
(5.6) (5.6) (.)

Y 70.5 29.5 0

(8.1) (8.1) (.)

B 0 89.5 10.5

(.) (9.9) (9.9)

Frequencies

YY YB BB

∅ 46.7 53.3 0

Y 73.9 26.1 0

B 0 100 0

Session 6

Beliefs

YY YB BB

∅ 61 39 0
(6.4) (6.4) (.)

Y 82 18 0

(5.0) (5.0) (.)

B 0 98.9 1.1

(.) (1.1) (1.1)

Frequencies

YY YB BB

∅ 39.5 60.5 0

Y 76.7 23.3 0

B 0 93.3 6.7

Session 8

Beliefs

YY YB BB

∅ 60 39.1 0.9
(5.6) (5.5) (0.8)

Y 57.5 42.5 0

(9.2) (9.2) (.)

B 0 96.5 3.5

(.) (1.5) (1.5)

Frequencies

YY YB BB

∅ 59.4 37.6 3.0

Y 68 32 0

B 0 88.9 11.1

Session 9

Beliefs

YY YB BB

∅ 48.3 51.7 0
(3.8) (3.8) (.)

Y 64.2 35.8 0

(8.2) (8.2) (.)

B 0 90.8 9.2

(.) (4.5) (4.5)

Frequencies

YY YB BB

∅ 60.7 39.3 0

Y 53.9 46.1 0

B 0 100 0

Session 12

Beliefs

YY YB BB

∅ 45.8 54 0.2
(4.0) (4.1) (0.2)

Y 46.2 53.7 0

(2.8) (2.8) (.)

B 0 65.7 34.3

(.) (17.8) (17.8)

Frequencies

YY YB BB

∅ 45.2 54.8 0

Y 53.3 46.7 0

B 0 12.5 87.5

Session 14

Beliefs

YY YB BB

∅ 0 45.3 54.7
(.) (3.8) (3.8)

Y 28.6 71.4 0

(18.4) (18.4) (.)

B 0 51.1 48.8

(.) (1.7) (1.7)

Frequencies

YY YB BB

∅ 0 48.5 51.5

Y . . .

B 0 50.8 49.2

Session 20

Beliefs

YY YB BB

∅ 49.9 0.2 49.9
(0.1) (0.2) (0.1)

Y 60.9 39.1 0

(17.0) (17.0) (.)

B 0 39.1 60.9

(.) (17.0) (17.0)

Frequencies

YY YB BB

∅ 48.1 0 51.9

Y 66.7 33.3 0

B 0 0 100

Session 21

Beliefs

YY YB BB

∅ 48.6 2.8 48.6
(0.9) (1.8) (0.9)

Y 93.6 6.4 0

(2.8) (2.8) (.)

B 0 6.4 93.6

(.) (2.8) (2.8)

Frequencies

YY YB BB

∅ 52.6 0 47.4

Y 100 0 0

B 0 0 100

Table 11: Receiver average beliefs and empirical frequencies.
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Session 5

Beliefs

a b c

∅ 52.7 45 2.3
(4.1) (3.8) (2)

Y 57.5 41.5 1

(10.6) (10.1) (1)

B 1.1 94.1 4.8

(1.1) (2.4) (1.7)

Frequencies

a b c

∅ 56.7 43.3 0

Y 95.7 4.3 0

B 0 94.1 5.9

Session 6

Beliefs

a b c

∅ 57.8 42.2 0
(6.6) (6.6) (0)

Y 55 45 0

(9.5) (9.5) (0)

B 0.2 97.8 2

(0.2) (1.3) (1.3)

Frequencies

a b c

∅ 65.8 32.9 1.3

Y 80 20 0

B 0 93.3 6.7

Session 8

Beliefs

a b c

∅ 67.9 32 0.1

(8) (8) (0.1)

Y 69.3 30.7 0

(9.8) (9.8) (0)

B 0.5 96.8 2.7

(0.5) (1.3) (1.3)

Frequencies

a b c

∅ 70.3 28.7 1

Y 88 12 0

B 0 83.3 16.7

Session 9

Beliefs

a b c

∅ 52.4 47.6 0
(8.3) (8.3) (0)

Y 37.4 62.6 0

(12.5) (12.5) (0)

B 1.7 98.3 0

(1.7) (1.7) (0)

Frequencies

a b c

∅ 52.5 47.5 0

Y 69.2 30.8 0

B 0 91.7 8.3

Session 12

Beliefs

a b c

∅ 49 47.3 3.7
(4.8) (4.7) (2.6)

Y 45 55 0

(3.1) (3.1) (0)

B 0 88 12

(0) (9.1) (9.1)

Frequencies

a b c

∅ 26.2 73.8 0

Y 44.2 55.8 0

B 0 75 25

Session 14

Beliefs

a b c

∅ 0 54.2 45.8
(0) (4.2) (4.2)

Y 42.8 57.2 0

(17) (17) (0)

B 0 53.6 46.4

(0) (3.6) (3.6)

Frequencies

a b c

∅ 3 54.5 42.5

Y . . .

B 0 46.3 53.7

Session 20

Beliefs

a b c

∅ 51.9 5 43.1
(3.5) (3.2) (5.6)

Y 60.6 35 4.4

(10.4) (9.6) (3.2)

B 11.9 36.9 51.2

(8.9) (9.1) (11.9)

Frequencies

a b c

∅ 39.2 3.8 57.0

Y 33.3 66.7 0

B 0 25 75

Session 21

Beliefs

a b c

∅ 49.2 1.6 49.2

(0.7) (1.4) (0.7)

Y 71 28.7 0.3

(13.6) (13.3) (0.3)

B 0.3 28.7 71

(0.3) (13.3) (13.6)

Frequencies

a b c

∅ 47.4 9.0 43.6

Y 66.7 33.3 0

B 40 20 40

Table 12: Sender average beliefs and empirical frequencies.
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E Best Responses

Receivers best responses. We can use elicited beliefs to see whether receivers best re-

sponded to their reported beliefs. To that purpose, we created the indicator BR-b which, for

every observation, takes value 1 if the receiver best responded to her reported beliefs in the

period and the session corresponding to the observation, and 0 otherwise. We also created

the corresponding indicator, BR-e, for best responses to the true empirical frequencies of the

session. These two indicators allow us to decompose behavior into observations for which the

receiver best responded to both her reported beliefs and the true frequencies (BR-b AND BR-

e), situations in which she failed to best respond to her own beliefs (Not BR-b), and situations

in which she did best respond to but was lead astray by her beliefs (BR-b AND Not BR-e).

The corresponding rates when facing vague messages17 are given for all sessions in Figure 10.

The rate at which receivers failed to best respond to their belief is between 20% and 30% for

most sessions, except sessions 20 and 21 for which it is lower. By contrast, the rate at which

receivers best responded to inaccurate beliefs varies more widely across sessions corresponding

to different games. This rate is higher in sessions with cyclic games.

All

Session 5

Session 6

Session 8

Session 9

Session 12

Session 14

Session 20

Session 21

Acy.

Cyc.

BR-b and BR-e

BR-b and Not BR-e

Not BR-b

0 10 20 30 40 50 60 70 80 90 100
%

Figure 10: Best-response rates for receivers facing with vague messages. BR-b and BR-e
measures the average rate at which receivers best-responded to the elicited beliefs and to the
empirical frequencies. BR-b and not BR-e measures the average rate at which receivers best-
responded to the elicited beliefs but not to the empirical frequencies. Not BR-b measures the
rate of failure of best-response to the elicited beliefs.

Senders best responses. As for receivers, we can use elicited beliefs to see whether senders

best responded to their reported beliefs and empirical frequencies. To that purpose, we created

17When facing FD, receivers best responded to beliefs and true frequencies at a rate close to 100% in all
sessions.
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the indicator BR-b which, for every observation, takes value 1 if the sender best responded

to her reported beliefs in the period and the session corresponding to the observation, and 0

otherwise. We also created the corresponding indicator, BR-e, for best responses to the true

empirical frequencies of the session. These two indicators allow us to decompose behavior into

observations for which the sender best responded to both her reported beliefs and the true

frequencies (BR-b AND BR-e), situations in which she failed to best respond to her own beliefs

(Not BR-b), and situations in which she did best respond to but was lead astray by her beliefs

(BR-b AND Not BR-e). The corresponding rates for envious senders18 are given for all sessions

in Figure 11. As for receivers, the rate at which envious senders failed to best respond to

their belief is roughly between 20% and 30% for most sessions, except sessions 20 and 21 for

which it is lower. By contrast, the rate at which senders best responded to inaccurate beliefs

varies more widely across sessions corresponding to different games. It is higher in sessions with

acyclic games.19

All

Session 5

Session 6

Session 8

Session 9

Session 12

Session 14

Session 20

Session 21

Acy.

Cyc.

BR-b and BR-e

BR-b and Not BR-e

Not BR-b

0 10 20 30 40 50 60 70 80 90 100
%

Figure 11: Best-response rates for envious senders. BR-b and BR-e measures the average rate
at which envious senders best-responded to the elicited beliefs and to the empirical frequencies.
BR-b and not BR-e measures the average rate at which envious senders best-responded to the
elicited beliefs but not to the empirical frequencies. Not BR-b measures the rate of failure of
best-response to the elicited beliefs.

18Satisfied senders best responded to beliefs and true frequencies at a rate close to 100% in all sessions.
19Session 12 is an exception, but this can be explained by the unbalance in the true frequencies of a and

b actions following silence which can be noted in Appendix D, Table 12. Senders failed to pick up on this
unbalance which they could have benefitted from, and instead best-responded to their reported beliefs.
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F Screenshots

Figure 12: Senders’ screen.

Figure 13: Sender belief elicita-
tion.

Figure 14: Receivers’ screen.

Figure 15: Receiver belief elicita-
tion.
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G Instructions (translated in English)

Thank you for agreeing to participate in this experiment. It is part of a research program on

information transmission.

During the experiment, you will have to be perfectly focused and we ask you to turn cell

phones off. It is important that you do not talk to any other participant during the whole

duration of the experiment. At any point, do not hesitate to ask us if you have any question

about the proceedings of the experiment.

In this experiment, you will be given the opportunity to make points. The more points you

make, the larger the amount of money you will receive at the end of the experiment. For your

coming to the lab, a 5 euros show-up fee will be added to your final gains.

Proceedings of the experiment

Participants’ roles. Before the start of the experiment, a computer will randomly assign a

role to each of you: half of you will be Player 1 and the other half will be Player 2. You

will keep this role for the whole duration of the experiment. The experiment is made up of 20

rounds (plus 2 trial rounds during which no points can be made).

A round of play. Each round of play proceeds as follows. First, the computer randomly

creates pairs of subjects made up of a Player 1 and a Player 2. In each round, you will thus be

matched with a new participant whose identity will never be revealed.

A pair of cards is then randomly drawn by the computer: either two Yellow cards are drawn,

or two Blue cards are drawn, or one Yellow card and one Blue card are drawn. Each of these

three pairs has the same chance to be drawn.

Next, the two cards are shown to Player 1 who then perfectly knows their two colors. The

two cards are not shown to Player 2. Once Player 1 has seen the two cards, he has the possibility

to show some cards to Player 2.

• Being Player 1, you can decide either to show the two cards you have seen, to show only

one of them (and to choose which one) or to show none. What you will show is exactly

what Player 2 will see on his computer screen.

• Being Player 2, you will observe the cards that Player 1 has decided to show you (if any)

and you will choose one of 3 actions: A, B or C.
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A B C
2 Yellow 10 0 0

1 Yellow, 1 Blue 0 2 0
2 Blue 3 3 3

Table of gains: Player 1

A B C
2 Yellow 5 5 5

1 Yellow, 1 Blue 0 10 0
2 Blue 0 0 1

Table of gains: Player 2

Points in each round. The number of points that you will make at the end of each round

will depend on the color of the two cards and on the action chosen by Player 2. The exact

number of such points will be shown in two tables of gains that you will observe during the

whole round of play. Here is an example of such tables (these tables are not the one you will

be playing with):

Table 1 gives the number of points that Player 1 can make and Table 2 the number of points

that Player 2 can make. Each line corresponds to one of the three possible draw of cards and

each column corresponds to one of the three possible actions (A,B or C). Thus, if one of the

two cards is Yellow and the other is Blue and if Player 2 chooses action B, Player 1 makes 2

points and Player 2 makes 10 points.

During the 22 rounds of play, the tables of gains will be kept unchanged. However, two new

cards are drawn in the beginning of each round of play.

Feedbacks at the end of a round. At the end of each round, you will be informed of all the

choices that have been made. Being Player 1, you will learn which action has been chosen by

Player 2 and how many points you made. Being Player 2, you will learn which cards had been

drawn and how many points you made. Every player will also be shown how many points have

been made by the other player. You will then move on to the next round of play.

Value of the points in euro.

At the end of the experiment, you will have played 22 rounds. The 2 first rounds are only

trial ones and do not bring any points. Points made on each of the following 20 rounds are

added and transformed in euros at the following rate: 5 points = 1 euro.

Good Luck !
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Comprehension test

Before the experiment starts, we ask you to answer the following questions to make sure the

instructions are clear for everyone. You will not be evaluated regarding your answers to these

questions, and the experimentalist will give you the answers orally once everyone is done.

1. During the whole experiment, you will play with the same partner. True / False

2. Your role will be different in each round of play. True / False

3. In each round, new tables of gains will be proposed. True / False

4. Being Player 1, you have to show at least one card to Player 2 for him to be able to choose

an action. True / False

5. Being Player 1, if your two cards are blue, you can show a yellow card to Player 2. True

/ False

6. Being Player 2, if Player 2 has not shown you any card, you will never know which cards

he saw. True / False

7. The tables of gains are the ones given above. Being Player 2, if Player 2 shows you a

yellow card, you will make 5 points whatever the action you choose. True / False

8. The tables of gains are the ones given above. Being Player 1, if your two cards are blue,

you will make 3 points whatever the action of Player 2. True / False

9. The tables of gains ate the ones given above. Being Player 2, if the two cards are yellow,

choosing action A will make you earn 10 points. True / False

10. If you make 60 points in total, you will earn 12 euros (+ 5 euros show-up fee). True /

False
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