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This supplementary material contains proofs and additional results that complement

the paper “Altruism in Networks”. The first section studies the transfer cost minimization

problem that underlies the potential maximization problem of the main paper, and uses it

to derive additional properties of equilibrium transfers, and provide different proofs of some

results. The generic uniqueness of equilibrium transfers is a consequence of this analysis.

We also use this section to explain the connections between our altruistic transfer game and

two classical transportation problems: the minimum cost flow problem, and the Monge-

Kantorovich optimal transportation problem. In the second section, we show convergence

of best response dynamics in the transfer game. In the third section, we look at conditions

for the presence or absence of transfer intermediaries, and provides a proof of Theorem 2

of the paper. Finally, in the fourth section, we consider comparative statics with respect

to initial income profiles and altruism. We prove the genericity result used in the proofs of

the paper, and provide some additional comparative statics results.

APPENDIX A : The Cost Minimization Approach

In this section, we analyze in detail the cost minimization problem and use it to draw

connection with classical linear programming problems, and to prove generic uniqueness

of equilibrium transfers. We also exhibit some additional properties of optimal transfer

networks such as cyclical monotonicity. The presentation of the first results borrows from

Galichon (2011). For an overview of the use of optimal transport methods in economics

see Galichon (2016).

Recall that the maximization of the potential is related to the cost minimization prob-

lem

c(y0,y) = min
T∈S(y)

∑

(i,j)∈A

cijtij , (MCF)
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where A = {(i, j) : αij > 0} is the set of arcs of the altruistic network α, and S(y) =

{T ∈ S : ∀i, yi = y0i −
∑

j tij +
∑

j tji} is a closed convex polytope since it is defined by a

finite number of weak inequalities. Note that S(y) is unbounded if the altruistic network

α admits a directed cycle, since one can then indefinitely increase the transfers of any

T ∈ S(y) along the cycle while still reaching y from y0. This problem is a classical linear

programming problem known as the Minimum Cost Flow problem. Indeed, if each cij is

interpreted as the marginal transportation cost between i and j, this problem consists of

minimizing transportation cost over the network of agents with the constraint of reaching

distribution y from distribution y0.

In network flow problems, a transfer profile T is called a flow, and we will sometimes

use this terminology. A first useful result from the network flow literature (see Galichon,

2011) says that any flow can be decomposed into paths and cycles. Before we do that, we

partition the set of agents into three sets: the sets of net givers IG = {i : yi < y0i } (or

sources), the set of net receivers IR = {i : yi > y0i } (or sinks), and the remaining agents.

We let Pij be the set of paths between i and j in the altruistic network, P =
⋃

(i,j)∈IG×IR
Pij ,

be the set of paths from net givers to net receivers, and C be the set of cycles in the network.

For any ρ ∈ P, let hρ be the intensity of the flow along ρ, and for each γ ∈ C, let gγ be

the intensity of the flow along γ. A flow on a path is called a path flow, and a flow on a

cycle is called a cycle flow. Together, the vectors h and g define a feasible transfer profile

T through the equation

tij =
∑

ρ∈P

hρ1(i,j)∈ρ +
∑

γ∈C

gγ1(i,j)∈γ. (A.1)

If in addition,

∀i ∈ IG,
∑

j∈IR

∑

ρ∈Pij

hρ = y0i − yi, (A.2)

and

∀j ∈ IR,
∑

i∈IG

∑

ρ∈Pij

hρ = yj − y0j , (A.3)

then T ∈ S(y). The following proposition shows that every transfer profile can be decom-
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posed in such a way. However, it is easy to see that this decomposition is not necessarily

unique. The proof we provide here is adapted from Galichon (2011).

Proposition A.1 (Flow Decomposition) Any transfer plan T ∈ S(y) can be decom-

posed into path flows and cycle flows of intensities h and g according to (A.1), and such

that h satisfies (A.2) and (A.3). Conversely any distribution of path flows and cycle flows

of intensities h and g such that h satisfies (A.2) and (A.3) defines a transfer plan T ∈ S(y)

through equation (A.1).

Proof. The second part of the proposition is immediate. For the first part, let T ∈ S(y),

and consider the following maximization problem

max
h,g

∑

ρ∈P

hρ +
∑

γ∈C

gγ (P)

s.t.
∑

ρ∈P

hρ1(i,j)∈ρ +
∑

γ∈C

gγ1(i,j)∈γ ≤ ti,j, ∀(i, j) ∈ A

Because this is a linear program over a bounded set, it has a solution (h, g). Consider the

flow T′, defined by

t′ij =
∑

ρ∈P

hρ1(i,j)∈ρ +
∑

γ∈C

gγ1(i,j)∈γ ≤ tij

Suppose that this inequality holds strictly. If (i, j) ∈ IG × IR, then one can increase the

flow going through the path ρ = (i, j) ∈ P by tij − t′ij while still satisfying the constraint

in (P). Since that would strictly improve the objective function of the program (P), that

would lead to a contradiction. Suppose for example that j /∈ IR. Then there must exist an

agent j′ such that t′jj′ < tjj′, for otherwise the conservation equation at j would be violated

by T′. Similarly, if i /∈ IG, then there exists an agent i′ such that t′i′i < ti′i. Extending

t′ij to the left and the right in this way, it must be the case that we end up with a path

ρ ∈ P that goes through (i, j), or a cycle µ ∈ C that does not necessarily go through (i, j),

and such that each for each (ℓ, k) that belongs to ρ or µ, t′ℓk < tℓk. Then there is some

leeway to increase the intensity hρ or gµ, and thus strictly improve the objective of the

maximization problem (P), while still satisfying its constraint: a contradiction.
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Note that if T has a cycle, it may admit a flow decomposition that puts 0 intensity on

all cycles. However, there must be a decomposition with a cycle, as the following result

shows.

Lemma A.1 T has a cycle if and only if it admits a flow decomposition that puts positive

intensity on a cycle.

Proof. Let γ = (i0, · · · , iℓ) be a cycle of T, and let τ = min(i,j)∈γ tij > 0. Then let gbe

the cyclic flow that puts intensity gγ = τ on the cycle γ, and let T′ = T − g. T′ is a

feasible transfer plan that achieves the same distribution as T, and therefore it has a flow

decomposition (h′, g′). Then (h′, g′ ++g) is a flow decomposition of T that puts positive

weight on a cycle. The other implication is trivial.

We now introduce a different cost minimization problem, known as the Monge-Kantorovich

optimal transportation problem, and show how it is related to the initial problem. In the

process, we also prove several important properties of the solutions to (MCF). We start

by defining the reduced cost vector ĉ with elements

ĉij = min
ρ∈Pij

∑

(ℓ,k)∈ρ

cℓk,

for every (i, j). This reduced cost vector is the cost vector associated with the transitive

closure α̂ of the altruism network. The cost ĉij is the lowest cost path between i and j.

We call such paths shortest paths. They correspond to highest altruism paths. Let P̂ij be

the set of shortest paths between i and j.

For every i ∈ IG let theGi = y0i −yi be the amount of money that needs to be transferred

away from i, and for every j ∈ IR, let Rj = yj − y0j be the amount of money that needs

to be transferred to j. By construction,
∑

i∈IG
Gi =

∑

j∈IR
Ri. We can view our problem

as that of transferring the amount
∑

i∈IG
Gi from IG to IR in the least costly way. It is
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natural to express the cost of transportation between i ∈ IG and j ∈ IR as ĉij. Formally,

min
τ∈R

IG×IR
+

∑

(i,j)∈IG×IR

ĉijτ ij (MK)

s.t.
∑

j∈IR

τ ij = Gi, ∀i ∈ IG

∑

i∈IG

τ ij = Rj , ∀j ∈ IR.

This program is a Monge-Kantorovich optimal transportation problem with discrete source

and target distributions. The two problems are related in the following way. Here again,

our presentation borrows from Galichon (2011).

Theorem A.1 If T solves (MCF), then it has no cycles, and all the paths with positive

intensity in its flow decomposition are shortest paths. Furthermore, the set of solutions

to (MCF) is a nonempty, compact and convex polytope. The value c(y, y0) of the cost

minimization problem is equal to the value function of (MK). The solutions of (MCF)

can be obtained from the solutions of (MK) by distributing each τ ij across the paths in P̂ij,

the shortest paths from i to j. The solutions of (MK) can be obtained from the solutions

of (MCF) by setting τ ij equal to the sum of the intensities over paths in Pij in the flow

decomposition of a solution T.

Proof. Using the flow decomposition theorem, we can rewrite (MCF) as

min
h,g

∑

ρ∈P

hρcρ +
∑

γ∈C

gγcγ

s.t.
∑

j∈IR

∑

ρ∈Pij

hρ = Gi, ∀i ∈ IG

∑

i∈IG

∑

ρ∈Pij

hρ = Rj , ∀j ∈ IR,

where cρ =
∑

(i,j)∈ρ cij and cγ =
∑

(i,j)∈γ cij.

Since cycles cannot help satisfying the constraints, it is optimal to set gγ = 0 for every

γ ∈ C. Hence optimal transfer networks have no cycle in their flow decomposition, and are
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therefore acyclic by Lemma A.1. It is also clear that only shortest paths can have strictly

positive intensity. Indeed, if there exists a path ρ ∈ Pij such that hρ > 0, and ρ is not a

shortest path, then reassigning intensity hρ to another path ρ′ ∈ P̂ij would lead to a cost

reduction of
(
cρ − ĉij

)
hρ > 0.

Having proved that the set of solutions to (MCF) is acyclic, we can solve the minimiza-

tion problem over the set of acyclic transfer plans. Contrary to the set of transfer plans, it

is bounded as no transfer tij can exceed the total amount of money available
∑

i y
0
i . It is

easy to show that it is also a closed set, therefore the minimization problem minimizes a

continuous function over a compact set, implying the existence of a solution. Since (MCF)

is a linear problem, we know that the solution set is a closed convex polytope, and since

all solutions are acyclic, it is also bounded and hence compact.

Since optimal transfers only use shortest paths, we can rewrite the objective function

of the transformed program as

∑

(i,j)∈IG×IR

∑

ρ∈P̂ij

hρcρ =
∑

(i,j)∈IG×IR

ĉij
∑

ρ∈P̂ij

hρ.

Letting τ ij =
∑

ρ∈P̂ij
hρ, the transformed program becomes (MCF). This shows that the

two programs have the same value function, and how to obtain the solutions of (MCF)

and (MK) from one another.

To get a better understanding of the structure of the set of solutions to (MCF), we

start by describing the structure of the set S(y). We know that it is a possibly unbounded

convex polytope. Therefore it can be expressed as the convex hull of a finite set of points

and directions. We will now characterize its set of extreme points and directions. The

directions will be given by the cycles of A. For every cycle γ ∈ C, let Tγ be the flow

defined by tγij = 1(i,j)∈γ . To describe the set of extreme points, we need some additional

notations. Let T ∈ S(y) be an acyclic transfer network, so that any flow decomposition

of T is given by a vector h. Pick any such decomposition h. Suppose in addition that,

for every (i, j) ∈ IG × IR, there exists at most one path ρ ∈ Pij such that hρ > 0 (if it

is the case for one decomposition of T it has to be the case for all of them). Then we
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define a matching µ of T as any collection of pairs (i1, j1), . . . , (ik, jk) such that: k ≥ 2;

iℓ 6= iℓ′ and jℓ 6= jℓ′ , for every ℓ 6= ℓ′; (iℓ, jℓ) ∈ IG × IR for every ℓ; and, for every ℓ, there

exists a (necessarily unique) path ρiℓjℓ ∈ Piℓjℓ such that hρiℓjℓ > 0. In this case, we say

that the support of µ, denoted by supp µ, is the list of pairs involved in the paths ρiℓjℓ , for

ℓ = 1, . . . , k.

Then let Sex(y) be the set of transfer plans in S(y) such that: (i) T has no cycles;

(ii) for any flow decomposition h of T, and every (i, j) ∈ IG × IR, there exists at most

one path ρ ∈ Pij such that hρ > 0; (iii) for every matching µ = (i1, j1), · · · , (ik, jk) of T,

either µ′ = (i1, j2), . . . , (ik−1, jk)(ik, j1) is not a matching of T, or µ and µ′ have the same

support.

Then we have the following result.

Proposition A.2 The set {Tγ}γ∈C is the set of directions of S(y), and Sex(y) is its set

of extreme points. In particular, Sex(y) is a finite set {T1, · · · ,Tk}, and for every matrix

T ∈ S(y), there exists nonnegative scalars λ1, . . . , λk such that λ1 + · · · + λk = 1, and

nonnegative scalars λγ for each γ ∈ C such that

T =

k∑

ℓ=1

λℓT
ℓ +
∑

γ∈C

λγT
γ.

Proof. To see that {Tγ}γ∈C is the set of directions of S(y), just note that if T ∈ S(y),

then, for any γ ∈ C and any λ > 0, the transfer plan T+λTγ is also in S(y). Furthermore,

any flow that is not a cycle, or a combination of cycles, cannot be added to T without

modifying the achieved distribution.

For extreme points, we start by showing that any T ∈ S(y)rSex(y) can be written as

a convex combination of two transfer plans in S(y), and therefore cannot be an extreme

point.

First, suppose that T has a cycle γ, and let τ = min(i,j)∈γ tij, T′ = T − τTγ and

T′′ = T+τTγ. It is easy to see that T′ and T′′ are both in S(y), and that T = 1
2
T′+ 1

2
T′′.

Hence we can assume that T is acyclic. Suppose now that there exists a pair (i, j) ∈ IG×IR

with at least two paths ρ and ρ′ in Pij such that tℓk > 0 for every (ℓ, k) ∈ ρ and every
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(ℓ, k) ∈ ρ′. Then let Tρ and Tρ′ be the flows respectively defined by tρℓk = 1(ℓ,k)∈ρ and

tρ
′

ℓk = 1(ℓ,k)∈ρ′ , and let τ = min(ℓ,k)∈ρ tℓk > 0 and τ ′ = min(ℓ,k)∈ρ′ tℓk > 0. We define the new

transfer plans

T1 = T− τTρ + τTρ′,

and

T2 = T− τ ′Tρ′ + τ ′Tρ.

It is easy to see that they both achieve y since they are obtained by reassigning to ρ′ some

of the money that flows from i to j through ρ, or reciprocally. Furthermore, we have

T =
1/τ

1/τ + 1/τ ′
T1 +

1/τ ′

1/τ + 1/τ ′
T2.

Now suppose that T satisfies properties (i) and (ii) but not (iii) in the definition of

Sex(y). Let µ = (i1, j1), · · · , (ik, jk) and µ′ = (i1, j2), . . . , (ik−1, jk)(ik, j1) be two matchings

of T with different supports. Then let Tµ and Tµ′

be the flows defined respectively by

tµij = 1(i,j)∈supp µ, and tµ
′

ij = 1(i,j)∈supp µ′ . Because µ and µ′ have different supports, we have

Tµ 6= Tµ′

. Let τ = min(i,j)∈supp µ tij > 0 and τ ′ = min(i,j)∈supp µ′ tij > 0. Consider the new

transfer plans

T1 = T− τTµ + τTµ′

,

and

T2 = T− τ ′Tµ′

+ τ ′Tµ.

It is easy to see that they both achieve y since they are only obtained by reassigning to µ′

some of the money that flows from sources i1, . . . , ik to the sinks j1, . . . , jk through µ, and

in this reassignment, each sink gains τ from one source and loses τ from another, while

each source gives an additional τ to one sink, and reduces its transfer to another source by

τ (or reciprocally for T2). Furthermore, we have

T =
1/τ

1/τ + 1/τ ′
T1 +

1/τ ′

1/τ + 1/τ ′
T2.

8



Therefore, all extreme points are in Sex(y). Now, let T ∈ Sex(y), and suppose that

it is not an extreme point. Because all extreme points are in Sex(y) we can write T as

a convex combination of extreme points T1, . . . ,Tk, all in Sex(y) (we do not need cycles

because T is acyclic). Let λℓ > 0 be the weight of each Tℓ in this decomposition. For each

ℓ = 1, · · · , k, and each pair (i, j) ∈ IG × IR, let ρijℓ ∈ Pij be the unique path between i

and j with positive flow in Tℓ. There may be no such path for some ℓ, but if ρijℓ and ρijℓ′

exist both, then we must have ρijℓ = ρijℓ′ , for otherwise T would put a positive flow on both

paths which is impossible.

We pick two of these transfer plans T1 and T2, and corresponding flow decompositions

h1 and h2. For every pair (i, j) ∈ IG × IR, let ρ
ij be the unique path between i and j with

a positive flow from at least one of the two transfer plans. Let τ 1
ij = h1

ρij
and τ 2ij = h2

ρij

be the flows of T1 and T2 over this path. If a transfer plan has no flow between i and j,

we set the corresponding τ ij to 0. We will say that (i, j) is a blue pair if τ 1
ij > τ 2

ij, and a

green pair if τ 1
ij < τ 2

ij. Next, consider the following procedure.

First, pick a blue pair (i1, j1). There must exist such a pair for otherwise, T1 = T2.

Because i1 is sending more money over the corresponding path in T1 than in T2, there

must exist an agent j2 ∈ IR to whom i1 is sending more money through the path ρi2j2 in

T2 than in T1. That is (i1, j2) is a green pair. For obvious reasons j1 6= j2. But then, j2 is

receiving more money from i1 in T2 than in T1. Hence, there must exist an agent i2 ∈ IG

such that j2 receives more money from i2 in T1 than in T2. That is (i2, j2) is a blue pair.

At this point we can build a new green pair (i2, j3), but it could be the case that j3 = j1. If

this is the case, we stop the construction, and otherwise we continue in this way. Because

there is a finite number of agents, we must end up creating a new pair such that one of the

agents involved was already part of a previous pair. The construction stops the first time

this happens.

This procedure creates an undirected cycle of alternate blue and green pairs. It may be

the case that some pairs in the construction are not part of the cycle, in this case, we keep

only the cycle. We relabel the blue pairs in the cycle (i1, j1), (i2, j2), · · · , (ik, jk). Then

the green pairs are (i1, j2), · · · , (ik−1, jk), (ik, j1). The blue pairs form a matching µ for T.
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Indeed, since T puts a positive weight λ1 on T1, and T1 has a positive flow over each path

corresponding to a blue pair, T must also have a positive flow over these pairs. But the

green pairs form a matching µ′ for T as well since T2 has a positive flow over each path

corresponding to a green pair, and T puts a positive weight on T2.

If µ and µ′ have the same support, then we can drop the pairs involved in the cycle and

do the construction above again with the remaining pairs. At some point, we must end

up with two matchings µ and µ′ with different support, for otherwise T1 and T2 would be

equal. But then, T violates condition (iii) in the definition of Sex(y).

The remaining of the proposition is just the classical decomposition of elements of a

convex polytope. (See for example Rockafellar, 1972, section 19).

We now uncover some properties of the set S∗(y) of solutions to (MCF). We start

by introducing the notion of cyclical monotonicity. For intuition, suppose that you are

currently transferring one dollar from agent i1 to agent j1 at a cost ĉi1j1 (hence you are

using the shortest path between these two agents), and another dollar from i2 to j2 at a

cost ĉi2j2 . The total cost of this redistribution is therefore ĉi1j1 + ĉi2j2. Another way to

achieve the same redistribution, however, would be to transfer one dollar from i1 to j2, and

one dollar from i2 to j1. If it is the case that

ĉi1j2 + ĉi2j1 < ĉi1j1 + ĉi2j2,

then, clearly, the first plan is not optimal.

Definition 1 (Cyclical Monotonicity) We say that a subset Γ ⊆ IG×IR is ĉ-cyclically

monotone if for every sequence (i1, j1), · · · , (ik, jk) of points in Γ such that all sources and

all sinks are distinct, we have
k∑

ℓ=1

ĉiℓjℓ ≤
k∑

ℓ=1

ĉiℓjℓ+1

with the convention jk+1 = j1.

Now, let Γ be the subset of IG× IR such that a pair (i, j) belongs to Γ if there exists an

optimal transfer plan T ∈ S∗(y), a flow decomposition h of T (we know that T is acyclic),
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and a shortest path ρ from i to j such that hρ > 0 (we know that all positive path flows of

T are on shortest paths).

Proposition A.3 Γ is ĉ-cyclically monotone.

Proof. Suppose otherwise, and let (i1, j1), · · · , (ik, jk) be a collection of points over which

the monotonicity condition fails. For each of the pairs ℓ = 1, · · · , k, let Tℓ be an optimal

transfer plan with flow decomposition hℓ that is positive on a shortest path from iℓ to jℓ.

Then T = 1
k
T1 + · · · + 1

k
Tk is also an optimal transfer plan whose flow decomposition

h = 1
k

∑k

ℓ=1 h
ℓ has a positive flow between all these pairs. Let h be the minimum flow

intensity across all pairs. Now consider reassigning h from each pair (iℓ, jℓ) to the pair

(iℓ, jℓ+1). This reassignment does not change the final distribution and it leads to a cost

reduction of

h×

(
k∑

ℓ=1

ĉiℓjℓ+1
−

k∑

ℓ=1

ĉiℓjℓ

)

> 0,

a contradiction to the optimality of T.

A natural corollary of this result is the following.

Corollary A.1 Let (i1, j1), · · · , (ik, jk) be a sequence of points in Γ, and suppose that, for

every ℓ = 1, . . . , k, (iℓ, jℓ+1) is also in Γ (with the convention jk+1 = j1). Then

k∑

ℓ=1

ĉiℓjℓ =

k∑

ℓ=1

ĉiℓjℓ+1

Proof. By the cyclical monotonicity inequality, the left-hand side is smaller than the

right-hand side. But by rearranging the order of the pairs, we can also obtain the reverse

inequality as a cyclical monotonicity inequality.

Equipped with this set of results, we can state a sufficient condition for the uniqueness

of the cost minimizing transfer plan.

Proposition A.4 (Uniqueness) Suppose that the cost vector c and the target distribu-

tion y satisfy the following properties: (a) for every (i, j) ∈ IG × IR, there is a unique
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shortest path in Pij; and (b) for every sequence (i1, j1), · · · , (ik, jk) of points in Γ such

that all sources and all sinks are distinct, we have either
∑k

ℓ=1 ĉiℓjℓ <
∑k

ℓ=1 ĉiℓjℓ+1
, or the

list of arcs in the shortest paths ρi1,j1, · · · , ρik,jk and the list of arcs in the shortest paths

ρi1,j2, · · · , ρik,j1 are the same. Then S∗(y) is a singleton.

Proof. Suppose that S∗(y) is not a singleton. Then there exists a transfer plan T in

S∗(y) that is not in Sex(y). Since T must be acyclic, it must fail property (ii) or (iii) of

the definition of Sex(y). Suppose first that it fails property (ii). Then there must exist a

pair (i, j) ∈ IG × IR and a flow decomposition h of T with positive flows on two distinct

paths ρ 6= ρ′ of Pij . By Theorem A.1, both of these paths must be shortest paths, but

that contradicts (a). Suppose now that it satisfies property (ii) but fails (iii). Then let

µ = (i1, j1), · · · , (ik, jk) and µ′ = (i1, j2), · · · , (ik, j1) be two matchings of T with different

support such that a flow decomposition h of T puts positive flows on µ and µ′. Then, by

Corollary A.1, we must have
∑k

ℓ=1 ĉiℓjℓ =
∑k

ℓ=1 ĉiℓjℓ+1
, which contradicts (b).

This allows us to prove the following generic uniqueness result.

Proposition A.5 (Generic Uniqueness) Generically in c, the cost minimizing transfer

plan is unique for every y0 and every feasible y.

Proof. Consider the set of cost vectors C̃ such that: (i) for every pair of agents (i, j),

and every pair of distinct paths ρ 6= ρ′ in Pij , cρ 6= cρ′ ; and (ii), for every sequence

(i1, j1), · · · , (ik, jk) of arcs in A, such that (iℓ, jℓ+1) ∈ A for each ℓ, and every choice of

paths ρℓ ∈ Piℓjℓ , and ρ′ℓ ∈ Piℓjℓ+1
, such that the list of arcs in he paths

(
ρ
)

ℓ=1,...,k
and

(
ρ′
)

ℓ=1,...,k
are distinct, then

∑k
ℓ=1 cρℓ 6=

∑k
ℓ=1 cρ′ℓ .

Note that we need to assume that the list or arcs in ρ and ρ′ are distinct, for otherwise

the two sums are necessarily equal. It is easy that any cost vector in C̃ satisfies properties

(a) and (b) of proposition A.4 for any y ∈ Y . But the set of cost vectors c that do not

belong to C̃ is a finite reunion of hyperplanes defined by a linear inequality, therefore C̃ is

generic in the set of possible cost vectors.

Before going back to the original problem, we provide some results on the value function

of the cost minimization problem. As usual in linear programming, the minimization
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program has a dual maximization program. In this case, it can be written as a program

over a vector of “prices” φ in R
N . For any feasible y,

c
(
y,y0

)
= max

φ

N∑

i=1

φi(yi − y0i ) s.t. φj − φi ≤ cij ∀i 6= j.

As a consequence, we have the following result.

Proposition A.6 The cost function c (y,y0) is convex in y and y0, supermodular in y−

y0, concave in c and continuous in all variables. Furthermore, it depends on c only through

ĉ. S∗(y) is upper hemicontinuous in y, y0 and c.

Proof. In the original problem, we are minimizing an objective function that is linear in

ĉ over a convex set. In the dual problem, we are maximizing an objective function that

is linear in y and y0 over a convex set. The dual formulation of the problem maximizes

a supermodular function in (y − y0,φ) over a lattice, therefore its value function is su-

permodular. The continuity properties can be derived by applying the maximum theorem

(see, for example, Aliprantis and Border, 2006) to the minimization problem after hav-

ing reduced the space over which the function is minimized to the compact set of acyclic

transfers that achieve y. The fact that the value function depends only on ĉ is a direct

consequence of Theorem A.1.

Going back to the original problem, we can now rewrite the problem of maximizing

the potential, as maxy∈Y
∑n

i=1 Ui(yi) − c (y,y0) , where Ui(yi) =
∫ yi

1
ln(u′

i(x))dx, and

summarize our results in the following theorem.

Theorem A.2 There is a unique equilibrium distribution y∗. It is continuous as a function

of y0 and c, and depends on c only through ĉ. The set of Nash equilibria of the transfer

game is a nonempty, compact and convex polytope given by

S∗ = argmin
T

∑

1≤i,j≤N

cijtij s.t.
∑

i 6=j

(tji − tij) = y∗i − y0i ∀i.

It is generically a singleton. Furthermore, every transfer network in S∗ is acyclic, and all
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its positive flows are on shortest paths. As a correspondence, S∗ is upper hemicontinuous

in (y0, c), and depends on c only through ĉ.

Proof. Most points are direct consequences of our results on the cost minimization

problem.The only point that needs proof is the existence, uniqueness and continuity of the

solution to the first program. Note first that Y is closed, and bounded since no agent can

get more than
∑

i y
0
i . The objective function is continuous, by assumption for the first

term, and as a consequence of convexity for the cost term. That gives us existence. The

program is strictly concave in y, by strict concavity of the Ui(·) functions, and convexity

of c (·,y0), therefore the solution is unique. Furthermore, the maximum theorem implies

that the solution to the problem is continuous in y0 and c.

APPENDIX B: Best-response dynamics

In this section, we use the potential to show convergence of best-response dynamics. As a

preliminary, we show a few lemmas.

Lemma B.1 For every scalar λ, the set Φλ = {T : ϕ(T) ≥ λ} is compact.

Proof. We know that ϕ(·) attains its maximum over the set of transfers. Let ϕ denote

the value of this maximum. The set Φλ is the reciprocal image of the interval [λ, ϕ] by the

continuous function ϕ(·), hence it is closed (if λ > ϕ, then Φλ is empty, and the lemma

holds vacuously). Suppose, by contradiction, that it is unbounded, and let {Tn} be an

unbounded sequence of transfers in Φλ, so that ‖Tn‖ → ∞. Fix a scalar K ≥ 0. We

can assume that, for every n, ‖T∗ −Tn‖ ≥ K. Let T∗ be a maximizer of ϕ(·). Clearly,

T ∗ ∈ Φλ. Consider the sequence T̃n defined by

T̃n =
K

‖T∗ −Tn‖
Tn +

‖T∗ −Tn‖ −K

‖T∗ −Tn‖
T∗

Note that, for every n,
∥
∥
∥T̃n −T∗

∥
∥
∥ = K. By concavity of ϕ, we have
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ϕ ≥ ϕ
(
T̃n
)
≥

K

‖T∗ −Tn‖
ϕ
(
Tn
)
+

‖T∗ −Tn‖ −K

‖T∗ −Tn‖
ϕ
(
T∗
)

≥
K

‖T∗ −Tn‖
λ+

‖T∗ −Tn‖ −K

‖T∗ −Tn‖
ϕ

n→∞
−−−→ ϕ

Hence the sequence ϕ
(
T̃n
)
converges to ϕ. Since the sequence T̃n lies in the compact set

of points at distance K of T∗, it has a converging subsequence. Let T̃∞ denote the limit of

this subsequence. It is at distance K of T∗. By continuity of ϕ, we must have ϕ
(
T̃∞
)
= ϕ.

Therefore, we have found a maximizer of ϕ at distance K of T∗. Since we can do so for

every K, this implies that the set S∗ is unbounded, a contradiction since it is compact by

theorem A.2.

For a player i, and a transfer profile T, let BRi(T) be the set of pairs (T′
i,T−i) such

that T′
i is a best response to T−i. For any ordering (a permutation) σ of players let

BRσ(T) = BRσ(n) ◦BRσ(n−1) ◦ · · · ◦BRσ(1)(T).

Lemma B.2 For any ordering σ, the best response correspondence BRσ is nonempty,

compact-valued and upper hemicontinuous. Furthermore, the set of fixed points of BRσ is

exactly the set S∗ of Nash equilibria of the transfer game.

Proof. First consider BRi(·). For every T′ ∈ BRi(T), we have T′
−i = T−i, hence the

correspondence is continuous in all dimensions j 6= i. On dimension i, we have, by the best

response potential property,

T′
i ∈ arg max

T̂i∈R
n−1

+

ϕ
(
T̂i,T−i

)

When solving this program, we can fix a transfer plan T0
i for player i, and restrict the

program above to transfers in the set

S(T−i) =
{
T̂i : (T̂i,T−i) ∈ Φϕ(T0

i ,T−i)

}
,
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which is compact by lemma B.1. It is also easy to see that the correspondence S(·) is

continuous. By continuity of ϕ(·), we can apply the maximum theorem to conclude that

the maximizer correspondence of this program is nonempty, compact-valued and upper

hemicontinuous. This implies that BRi(·) is nonempty, compact-valued and upper hemi-

continuous, for every i, and therefore that BRσ(·) satisfies these properties as well.

If T is a Nash equilibrium of the transfer game, it is clearly a fixed point of BRσ.

Suppose that T ∈ BRσ(T), then ϕ remains constant along the sequence of best replies

that lead to BRσ(T). This implies that, at each step i of this sequence, T is among the

best replies of player i. Therefore T is a Nash equilibrium of the transfer game.

We say that {Tk} is a best-response dynamics sequence if, for every k,

Tk ∈ BRσ ◦ · · · ◦BRσ

︸ ︷︷ ︸

k times

(T0).

Proposition B.1 The limit set of any best-response dynamics sequence is a subset of the

set of Nash equilibria S∗. For any best-response dynamics sequence {Tk}, the sequence of

corresponding consumption profiles {yk} converges to the unique equilibrium distribution

y.

Proof. Pick any best-response dynamics sequence {Tk}. First note that the sequence

ϕ(Tk) is increasing and bounded above by ϕ, and therefore converges. We denote its limit

by ϕ∞. Since, for every k, ϕ(Tk) ≥ ϕ(T0), the sequence Tk lies in the compact set Φϕ(T0).

Hence {Tk} admits a converging subsequence. Let {T g(k)} be such a subsequence, and

Tg(∞) its limit. By continuity of ϕ, we have ϕ
(
Tg(∞)

)
= ϕ∞.

Consider the subsequence Tg(k)+1. Since it lies in a compact set, we can extract a

converging subsequence from this new sequence. Assume, without loss of generality for

the argument to follow, that Tg(k)+1 is itself convergent, and denote its limit by T̃. Since

Tg(k)+1 ∈ BRσ(Tg(k)), we have by upper hemicontinuity of BRσ, that T̃ ∈ BRσ(Tg(∞)).

Since Tg(k)+1 is also a converging subsequence of Tk, we have ϕ(T̃) = ϕ∞ = ϕ(Tg(∞)).

This implies that Tg(∞) is also in BRσ(Tg(∞)), and is therefore in S∗. This must hold for

any limit of a converging subsequence of Tk, so the limit set of Tk is a subset of S∗.
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Next consider the sequence of consumption profiles yk. Since {Tk} lies in the compact

set Φϕ(T0), and since the function that maps a transfer profile to the corresponding distri-

bution is continuous, it is uniformly continuous on Φϕ(T0). Pick ε > 0, and δ > 0, such

that for every T and T′ in Φϕ(T0), ‖y − y′‖ < δ. By definition of the limit set, we can pick

K, such that for every k > K, Tk is within distance δ of the limit set S∗ of the sequence.

Then, for every k > K, yk is within distance ε of the distribution y associated with some

T ∈ S∗, that is,
∥
∥yk − y

∥
∥ < ε. Hence yk converges to the unique equilibrium distribution

y.

Clearly, if the equilibrium transfer network is unique, as is generically true, then best-

response dynamics converges to the unique equilibrium.

APPENDIX C : Transfer Intermediaries

In this section, we prove Theorem 2 of the paper, and then we provide an example show-

ing how transitivity may be satisfied by an altruistic network that is inconsistent with

deferential caring.

Proof of Theorem 2. For the first point, suppose first that α is transitive and consider

an equilibrium T with a transfer chain ti1i2 > 0, ..., tiℓ−1iℓ > 0 with ℓ ≥ 3. Let τ be the

smallest transfer in the chain. Consider the alternative profile T′ where t′isis+1
= tisis+1

− τ ,

t′i1il = ti1il+τ and t′ij = tij for the other pairs. In T′, transfer τ is redirected to flow directly

from i1 to iℓ rather than indirectly through the chain. This removes one link in the transfer

chain. Note that consumption is unchanged. In addition, the difference in costs between

the original and the modified profiles is equal to ci1iℓ −
∑ℓ−1

s=1 cisis+1
. By Theorem 1, i1,

..., iℓ is a least path of α, which means that ĉi1iℓ =
∑ℓ−1

s=1 cisis+1
. Since α = α̂, T′ has

the same cost as T. By Theorem 1, this is also a Nash equilibrium. Thus, for any Nash

equilibrium with a transfer chain, we can construct another equilibrium with one less link

in the transfer chain. Repeating the operation eventually leads to an equilibrium without

transfer chains.

Next, suppose that α is not transitive. Then, there exists some pair i, j such that

αij < α̂ij. Set y0i = Y and y0k = 0 ∀k 6= i. By Theorem 3, yi is increasing in Y . Suppose
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that yi is bounded. Then, yi tends to some y. Since
∑

j yj = Y , there is some k such that

yk tends to ∞. Here all the money originates in i, so money must flow somehow from i to

k. Thus, u′
i(yi) = α̂iku

′
k(yk). In the limit, this yields: u′

i(y) = 0 which is a contradiction.

Therefore, yi becomes arbitrarily large as Y increases. From conditions (5) in the main

paper, we know that u′
i(yi) ≥ α̂iju

′
j(yj). Since yi tends to ∞ and α̂ij > 0, u′

j(yj) tends to

0 and hence yj > 0 if Y is large enough. Money flows, somehow, from i to j. By Theorem

1, it flows through a least cost path which, by assumption, cannot be the direct link.

For the second point, suppose that α is consistent with deferential caring and let B

be the matrix of weights that agents put on others social utilities. Let M = (I − B)−1

such that αij = mij/mii as in Section II. We can easily show that α is transitive iff

∀i, j, k, αik ≥ αijαjk. This is equivalent to: ∀i, j, k,mikmjj ≥ mijmjk. These inequalities

are called the “path product conditions”, and are known to hold if M is the inverse of a

M-matrix, see Johnson & Smith (2007). This is the case here. �

Next, we provide an example of a transitive altruistic network that is inconsistent with

deferential caring. For this, we adapt the example of Johnson & Smith (2011, p. 963).

Consider the following altruistic network connecting 4 agents

α =











0 0.1 0.4 0.3

0.4 0 0.4 0.65

0.1 0.2 0 0.6

0.15 0.3 0.6 0











which is transitive since ∀i, j, k distinct, αij ≥ αikαkj. Suppose that α is consistent with

deferential caring. Then there exists B ≥ 0 such that bii = 0, λmax(B) < 1 and αij =

mij/mii with M = (I−B)−1. Let D be the diagonal matrix such that dii = 1/mii. Then,

I+α = D(I−B)−1 ⇒ B = I−(I+α)−1D. Since bii = 0, we must have dii = 1/[(I+α)−1]ii.

This implies that
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B ≈











0 0.003 0.231 0.054

0.376 0 −0.074 0.425

0.004 0.031 0 0.510

0.035 0.281 0.588 0











which is impossible since b23 < 0. This provides an example of transitive altruistic network

that is not consistent with deferential caring. By contrast, Theorem 3.2 of Johnson & Smith

(1999, p. 183) implies that for n = 2 or 3, any transitive altruistic network is consistent

with deferential caring.

APPENDIX D : Comparative Statics

We start this section by proving a technical lemma showing that, generically, the inequali-

ties in equilibrium conditions (5) of the paper hold strictly. This result is important for the

proofs of the comparative statics results in the paper. Then we extend example 3 of the

main paper, by showing that if society consists of two separate communities with distinct

aggregate incomes, an inequality-reducing income redistribution from rich individuals in

the poorest to poor individuals in the richest community increases consumption inequal-

ity whenever the income gap between the two communities is sufficiently large. Finally,

we conclude the section by illustrating the comparative statics result of Theorem 4 with

an example that shows the evolution of the transfer network and equilibrium consump-

tion as altruism increases between two agents in the network. In particular, we exhibit

non-monotonic consumption changes for some agents.

(a) Genericity Result.

First, we show the genericity result in the sense of measure, which is the one adapted

in the paper.

Lemma D.1 Generically in (α,y0), the unique equilibrium transfer network T satisfies

tij = 0 ⇒ u′
i(yi) > αiju

′
j(yj).
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Proof. Consider the set A of altruistic networks with no zeros (that is αij > 0 for all

i 6= j), and the set of initial income distributions Y . Note that the set of altruistic networks

with some zeros has measure 0, but our proof would work if we restricted ourselves to a set

of altruistic networks with zeros on some given arcs. Let G be the set of oriented acyclic

graphs whose vertices are the agents of our model. For a graph g ∈ G, we let gij = 1 if

(i, j) is an arc of g,and gij = 0 otherwise. For every pair (i, j), let Gij be the set of graphs

in G such that i and j are not path-connected.

Next, we pick a pair (i, j) and a graph g ∈ Gij . Denote by Cg
i and Cg

j the connected

components of i and j. For any k ∈ Cg
i , there is a unique undirected path connecting i to

k. For every arc (ℓ,m) on this path, let βℓm = αgmℓ−gℓm
ℓm , and let βik be the product of the

βℓm along this path. Then we can define the functions

hg

k(x) =
[
u′
k

]−1(
βiku

′
i(x)

)
,

and hg
i (x) = x. Note that these functions are strictly increasing in x and continuous in x

and α. Then the sum
∑

k∈C
g

i
hg

k(x) is also a strictly increasing and continuous in x, and

continuous in α, and so is its inverse which we denote by Hg
i (x). We define similarly the

strictly increasing and continuous function Hg
j (x) for j.

Now consider the set Eg
ij of initial income profiles y0 and altruistic networks α that

satisfy Hg
i

(
y0(Cg

i )
)
= Hg

j

(
y0(Cg

j )
)
. Because the two functions Hg

i (·) and Hg
j (·) are strictly

increasing, one can write y0i as a continuous function of (y0
−i,α). Therefore the set Eg

ij

has Lebesgue measure 0 in A×Y as the graph of a continuous function (see, for example,

Zorich & Cooke, 2004). But then the set

E =
⋃

(i,j)

⋃

g∈Gij

Eg
ij,

also has measure 0 in the set of initial income profiles, as a finite union of measure 0 sets.

Note that the set of (α,y0) such that α has some zeros has measure 0, and that the

set of (α,y0) such that α does not satisfy the generic uniqueness conditions also has

measure 0. To conclude the proof, we show that the set of remaining (α,y0) that do not
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satisfy the property of the lemma is a subset of E , and therefore has measure 0. To see

that, suppose that in the unique equilibrium, there exists a pair (i, j) such that tij = 0

and u′
i(yi) = αiju

′
j(yj). First, note that i and j cannot be connected in the equilibrium

transfer network T. Otherwise one could transfer a sufficiently small amount ε over the

arc (i, j), substract ε from all transfers along the undirected path that connects i to j

and go in the opposite direction as (i, j) and add ε to all such transfers that go in the

same direction as (i, j), and still satisfy the equilibrium conditions. This would violate

equilibrium uniqueness. But then if we let g be the graph of the unique equilibrium

transfer network, we have g ∈ Gij. And equilibrium conditions (5) from the paper imply

that (α,y0) must be in Eg
ij.

Note that it is also possible to prove genericity in a topological sense: the set of (α,y0)

such that tij = 0 ⇒ u′
i(yi) > αiju

′
j(yj) is open and dense in the product set of altruistic

networks and initial income profiles.

(b) Inequality increasing redistribution.

Consider an altruistic network formed of two communities C1 and C2. Communities

are separate but strongly connected within. Formally, ∀i ∈ C1, j ∈ C2, αij = αji = 0 and

∀i, j ∈ C1 (or C2), α̂ij > 0. Assume that y0(C2) > y0(C1) so that C2 is richer, overall, than

C1. We can show the following result.

Proposition D.1 Consider an income inequality reducing redistribution from C1 to C2.

For any value of y0(C1), there exists Y2 such that if y0(C2) ≥ Y2, consumption inequality

increases in terms of second-order stochastic dominance.

Proof. To prove this result, we first bound each agent’s consumption by functions of

aggregate income. Consider community C2. From the equilibrium conditions, we have:

∀i, j, u′
i(yi) ≤ α̂iju

′
j(yj) ⇒ (u′

j)
−1( 1

α̂ij
u′
i(yi)) ≥ yj. Let fi(yi) =

∑

j(u
′
j)

−1( 1
α̂ij

u′
i(yi)). Sum-

ming over j yields fi(yi) ≥
∑

j yj =
∑

j y
0
j = y0(C2). In addition, fi is increasing. As

yi tends to ∞, 1
α̂ij

u′
i(yi) tends to 0 and hence (u′

j)
−1( 1

α̂ij
u′
i(yi)) tends to ∞. Therefore,

yi ≥ f−1
i (y0(C2)) where f−1

i is increasing and satisfies limy→∞ f−1
i (y) = ∞. This implies
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that consumption of every agent becomes arbitrarily large as the aggregate community

income becomes arbitrarily large.

Conversely, consider community C1. ∀j, i, u′
j(yj) ≤ α̂jiu

′
i(yi) ⇒ yj ≥ (u′

j)
−1(α̂jiu

′
i(yi)).

Let gi(yi) =
∑

j(u
′
j)

−1(α̂jiu
′
i(yi)) and sum over j. We obtain: y0(C1) ≥ gi(yi) where gi

satisfies similar properties as fi. This implies that yi ≤ g−1
i (y0(C1)) where g

−1
i is increasing.

By Theorem 3, the redistribution decreases weakly the consumption of every agent in

C1 and increases weakly the consumption of every agent in C2. This increases inequality

for second-order stochastic dominance if the initial income profile satisfies maxi∈C1
yi ≤

mini∈C2
yi. In other words, if the richest agent in terms of consumption in the poor

community is poorer than the poorest agent in the rich community. This is satisfied if

maxi∈C1
g−1
i (y0(C1)) ≤ miniC2

f−1
i (y0(C2)). The fact that limy→∞ f−1

i (y) = ∞ then proves

the result.

(c) Increasing altruism, an example.

In this section, we illustrate global comparative statics with respect to altruism levels

by an example. In the example, all agents have identical CARA utilities ui(yi) = −e−yi .

The altruistic network is given in Figure 1. We vary the altruism level α36 = e−c. As

shown in Theorem 4 of the paper, the transfer network is locally stable for generic values

of c, and agents who are connected to 3 consume less, while agents connected to 6 consume

more. Globally, agents may be connected to 3 at some point, and 6 at another (agents 2

and 5 in the example), and their consumption is non-monotonic. Note that the connected

components of both agents 3 and 6 shrink and expand at times as we vary c. The values of

c for which the graph of the transfer network changes correspond to non-generic altruistic

networks at which there are multiple equilibrium transfer networks. For example, at the

transition between transfer graphs A and B, at c = 24.5, there are multiple equilibria which

correspond to the convex combinations of the left and right limit transfer networks.
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Figure 1: Changing altruism – an example. The top-left panel shows altruism levels as
given by the “transfer cost” − lnαij, the comparative statics brings altruism level of agent
3 to agent 6 from 0 (c = ∞) to 1 (c = 0). The red figures are initial incomes. The
top-right panel shows the evolution of consumption for all agents. The lower panels show
the graphs of the transfer network in the different regions. In the green zones are agents
connected to 6, whose consumption increases, in the red zones are agents connected to 3,
whose consumption decreases, and in the blue zones are agents connected to neither, whose
consumption is stable.
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