Political Competition 2

Eduardo Perez-Richet

Ecole Polytechnique
Limits of The Downsian Model

• The candidates are perfectly informed about the preferences of the voters (or at least they know the preferred policy of the median voter).

• The framework is essentially limited to one-dimensional policy spaces.

• Political parties are exogenously given and candidates do not self-select.

• Candidates can commit to applying their campaign promises.

• Platforms are non-ambiguous.
Outline

1. Probabilistic Voting: Random Utility Model
 a. Office seeking candidates
 b. Ideological Candidates
2. Probabilistic Voting: Idiosyncratic Biases
3. Probabilistic Voting and Redistribution
4. Citizen Candidate Models
Random Utility Model

• Suppose the preferences of the voters satisfy either
 (i) SP
 (ii) SCP and the median voter’s preferences are SP.

• Then majority voting produces a single-peaked ordering \succeq^{mv} on Π. Let π_m be the maximal element of this ordering (the favorite policy of the median voter).

• To capture uncertainty about preferences, we assume that the candidates do not observe π_m but instead believe that $\pi_m \sim F(.)$. We will show that this is enough to capture all the relevant uncertainty about \succeq^{mv}.

• We assume that the beliefs of the candidates coincide: polls are public information.
Double Median

• Let $\pi_m^* = F^{-1}(1/2)$ be the median (relative to the uncertainty) favorite policy of the median voter.

Theorem (Convergence)

If the two candidates are office seeking, there exists a unique pure strategy Nash equilibrium in which both candidates choose the same platform π_m^.***
Proof 1

• For simplicity, we assume that $F(.)$ has full support.

• Suppose the candidates announce $\pi_L < \pi_R$.

• $\pi_L (\pi_R)$ wins for all the profiles with $\pi_m < \pi_L (\pi_m > \pi_R)$

• Look at the deviation $\pi_L \rightarrow \pi'_L = \pi_L + \frac{2}{3}(\pi_R - \pi_L)$

• Then for all the profiles with $\pi_m < \pi'_L$, π'_L is a winner
Proof 2

• Two cases

 (i) If for some of these profiles π_L was losing, then the deviation is profitable.

 (ii) If π_L was already winning for all of these profiles, then $\pi_R \rightarrow \pi'_R = \pi_R - \frac{2}{3}(\pi_R - \pi_L)$ is a profitable deviation from π_R.

• Hence $\pi^L = \pi^R$.

• But then if $\pi_L = \pi_R \neq \pi^*_m$, any candidate can move to $\pi = \frac{\pi_L + \pi^*_m}{2}$ and win with a probability greater than $F(\pi) > 1/2$.
Ideological Candidates: an Example

• Π is an interval of \(\mathbb{R} \) that contains \([-1, 1]\).

• All voters have symmetric single-peaked preferences

• \(\pi_m \) is uniformly distributed on \([-\delta, \delta]\).

• Candidates \(\ell \) and \(r \) with preferences

\[
\begin{align*}
 u_\ell(\pi) &= -(\pi + 1)^2, \\
 u_r(\pi) &= -(\pi - 1)^2
\end{align*}
\]

• \(\ell \) wins if \(\pi_m < \frac{\pi_\ell + \pi_r}{2} \)
Equilibrium: Partial Convergence

• In equilibrium, it must be true that \(\frac{\pi_\ell + \pi_r}{2} \in [-\delta, \delta] \).

• By symmetry \(\pi^{*}_\ell = -\pi^{*}_r \).

• \(\ell \)'s payoff

\[
-\left(\pi_\ell + 1\right)^2 \frac{1}{2\delta} \left(\frac{\pi_\ell + \pi_r}{2} + \delta\right) - \left(\pi_r + 1\right)^2 \frac{1}{2\delta} \left(\delta - \frac{\pi_\ell + \pi_r}{2}\right)
\]

• Then by taking the FOC: \(\pi^{*}_\ell = -\frac{\delta}{1+\delta} = -\pi^{*}_r \).

• Hence there is partial convergence, and \(\pi^{*}_\ell, \pi^{*}_r \to \pi_m = 0 \) as \(\delta \to 0 \).
Outline

1. Probabilistic Voting: Random Utility Model
 a. Office seeking candidates
 b. Ideological Candidates
2. Probabilistic Voting: Idiosyncratic Biases
3. Probabilistic Voting and Redistribution
4. Citizen Candidate Models
Probabilistic Voting

• The policy space $\Pi \subseteq \mathbb{R}^n$.

• There are two exogenously given, office seeking candidates A and B who choose policies π_A and π_B to maximize their vote share.

 • For example, because a higher share of the votes leads to more post-election power (whether they win or they lose), or more opportunities to earn rents, or increased campaign funding in future elections.

• Campaign promises are binding.
Voters Preferences

• The preferences of voter i over Π are given by $u_i(\pi)$.

• Voters also care about other dimensions that the candidates cannot control (image, personality, likeability, perceived policy positions on issues that are left out of the debate...)

• The payoff of i if candidate k is elected is given by

$$U_i(k) = u_i(\pi_k) + \varepsilon_i^k$$

• The likeability factors ε_i^k are random from the point of view of the candidates

$$\varepsilon_i^B - \varepsilon_i^A \sim F_i(.)$$
Vote Shares

• Regularity Assumptions: $u_i(.)$ and $F_i(.)$ continuously differentiable, the density of $F_i(.)$ is $f_i(.)$.

$$\Pr(i \text{ votes for } A) = \Pr(U_i(A) - U_i(B) > 0) = F_i(u_i(\pi_A) - u_i(\pi_B))$$

• Candidate A’s expected number of votes is:

$$V_A(\pi_A, \pi_B) = \sum_{i \in I} F_i(u_i(\pi_A) - u_i(\pi_B))$$

• B’s expected number of votes is:

$$V_B(\pi_A, \pi_B) = \#I - \sum_{i \in I} F_i(u_i(\pi_A) - u_i(\pi_B))$$
Convergence

• Assumptions (see Banks and Duggan, 2006)
 1. Π is compact and convex
 2. \(u_i(.) \) is concave.
 3. \(V_A(\pi_A, \pi_B) \) is strictly concave in \(\pi_A \) and strictly convex in \(\pi_B \).

• Under these assumptions, there exists a unique Nash equilibrium in which both candidates choose the same platform \(\pi^* \).

• Furthermore \(\pi^* \) maximizes the following weighted social welfare function

\[
\pi^* = \arg\max_{\pi} \sum_i f_i(0) u_i(\pi),
\]

in which \(i \)'s weight is \(f_i(0) \).
Partial Argument

• In a Nash equilibrium

\[\pi_A^* \in \arg \max_{\pi} \sum_{i \in I} F_i \left(u_i(\pi) - u_i(\pi_B^*) \right) , \]

\[\pi_B^* \in \arg \max_{\pi} - \sum_{i \in I} F_i \left(u_i(\pi_A^*) - u_i(\pi) \right) . \]

• First Order Conditions for a Nash equilibrium with convergence

\((\pi_A^* = \pi_B^* = \pi^*) \)

\[\sum_{i \in I} f_i(0)u_i'(\pi^*) = 0. \]

• This condition is the same as the FOC for the program

\[\max_{\pi} \sum_{i} f_i(0)u_i(\pi) \]
Interpreting the Result

• Suppose a voter’s utility is given by

\[U_i(C) = u_i(\pi C) + \alpha_i \varepsilon^C, \]

where

(i) \(\varepsilon^C \sim F(.) \) common to all voters.

(ii) \(\alpha_i > 0 \) is the weight of the bias for voter \(i \).

• Then the weight of voter \(i \) is \(f(0) \frac{\alpha_i}{\alpha_i} \).

• Intuition: the voters who care more about policy and less about the idiosyncratic factor have more weight in the political outcome.

• Note that the political outcome is ex ante Pareto efficient whenever \(E [\varepsilon_i^A - \varepsilon_i^B] = 0 \).

• It is also Pareto efficient if we decide that idiosyncratic biases should be ignored.
Outline

1. Probabilistic Voting: Random Utility Model
 a. Office seeking candidates
 b. Ideological Candidates

2. Probabilistic Voting: Idiosyncratic Biases

3. Probabilistic Voting and Redistribution

4. Citizen Candidate Models
Probabilistic Voting and Redistribution

• Lindbeck and Weibull (1987)

• Voters $\mathcal{I} = \{1, \ldots, l\}$, with incomes $y_i > 0$.

• A redistribution policy $t \in \mathbb{R}^l$ is feasible and budget balanced if it satisfies:

 (i) $y_i + t_i > 0$

 (ii) $\sum_{i \in \mathcal{I}} t_i = 0$

• Preferences with $v'_i(.) > 0$ and $v''_i(.) < 0$ and $v'_i(0) = \infty$

 $$u_i(t, C) = v_i(y_i + t_i) + \varepsilon_i^C$$

• $\varepsilon_i^B - \varepsilon_i^A \sim F_i(.)$
Equilibrium

• Nash equilibrium

\[t^A \in \arg \max_t \sum_{i \in \mathcal{I}} F_i \left(v_i(y_i + t_i) - v_i(y_i + t_i^B) \right) \quad \text{s.t.} \quad \sum_i t_i = 0, \]

\[t^B \in \arg \max_t \sum_{i \in \mathcal{I}} -F_i \left(v_i(y_i + t_i^A) - v_i(y_i + t_i) \right) \quad \text{s.t.} \quad \sum_i t_i = 0, \]

• Let \(\lambda^A \) and \(\lambda^B \) be the Lagrange multipliers associated with the constraint in each program. Then for every \(i \) and every \(C \in \{A, B\} \)

\[v'_i(y_i + t_i^C)f_i \left(v_i(y_i + t_i^A) - v_i(y_i + t_i^B) \right) = \lambda^C. \]
Policy Convergence

• Hence the following ratio is constant across individuals i

$$\frac{v_i'(y_i + t^A_i)}{v_i'(y_i + t^B_i)}$$

• Suppose $t^A \neq t^B$, then there exists j such that $t^A_j > t^B_j$.

• But then it is true for every i that $t^A_i > t^B_i$.

• But then $\sum_i t^A_i > \sum_i t^B_i$

• t^A and t^B cannot both be budget balanced!
Conclusions

- Hence in any Nash equilibrium in pure strategies, there is policy convergence $t^A = t^B = t^*$.

- Then there exists a constant $\lambda > 0$ such that
 $$\sum_{i \in I} v'_i(y_i + t^*_i)f_i(0) = \lambda.$$

- And
 $$t^* = \arg \max_t \sum_i f_i(0)v_i(y_i + t) \text{ s.t. } \sum_i t_i = 0.$$

- The voters who receive higher transfers are those with higher $f_i(0)$. As before, citizens who care less about the idiosyncratic factor receive more.

- Note that the cause of policy convergence is different than in the previous probabilistic voting framework.
Remarks on Probabilistic Voting

• The clear advantage of probabilistic voting models is that they allow to deal with multi-dimensional policy space.

• They also introduce some uncertainty in elections which seems realistic.

• The electoral game always admits a mixed strategy equilibrium.

• However, to ensure existence of a pure strategy equilibrium (or uniqueness, or policy convergence), we need to make assumptions that imply that the amount of uncertainty/randomness is substantial. Put differently, voters must care relatively little about the policy in question.
1. Probabilistic Voting: Random Utility Model
 a. Office seeking candidates
 b. Ideological Candidates

2. Probabilistic Voting: Idiosyncratic Biases

3. Probabilistic Voting and Redistribution

4. Citizen Candidate Models
Citizen Candidates

- Besley and Coate (1997), Osborne and Slivinski (1996)

- Idea: candidates are citizens who decide to step up to defend their ideal policy.

- Candidacy is endogenous.

- There is no commitment.
Model

- $\mathcal{I} = \{1, \ldots, I\}$

- Π_i is the set of policies available to i (citizens may have different policy-making competence).

 \[\Pi = \bigcup_{i \in \mathcal{I}} \Pi_i \]

- Utility $U_i(\pi, j)$, where $j \in \mathcal{I} \cup \{0\}$ (ego-rents, likeability...)

- Every citizen can decide to run at cost δ.

- Elections: the candidate with the highest number of votes wins, (uniform probabilities in case of a tie).

- If no one runs, the default policy is $\pi_0 \in \bigcap_{i \in \mathcal{I}} \Pi_i$
Timing

1. Candidates declare themselves.

2. Citizens decide for whom to vote among the declared candidates.

3. The elected candidate makes a policy choice.

We analyze these choices in reverse order...
The citizen who wins implements her preferred policy, anything else is not credible (no commitment device)

\[\pi_k^* = \arg \max_{\pi \in \Pi_k} U_k(\pi, k). \]

Hence we can associate a utility profile \((u_{1k}, \ldots, u_{Ik})\) to each candidate \(k\) (and to the no candidate situation \(k = 0\)), with

\[u_{jk} = U_j(\pi_k^*, k) \]
Voting

• Let $\mathcal{C} \subset \mathcal{I}$ be the set of declared candidates.

• Citizens can vote for a candidate in \mathcal{C} or abstain, $\nu_i \in \mathcal{C} \cup \{0\}$.

• A voting profile $\nu = (\nu_1, \cdots, \nu_I)$.

• Let $\mathcal{W}(\mathcal{C}, \nu)$ be the set of winning candidates under ν.

• Then the probability that i wins the election is

$$P_i(\mathcal{C}, \nu) = \begin{cases} 1/\#\mathcal{W}(\mathcal{C}, \nu) & \text{if } i \in \mathcal{W}(\mathcal{C}, \nu) \\ 0 & \text{otherwise} \end{cases}$$
In a voting equilibrium, every voter correctly anticipates what policy candidate k will choose if she wins.

ν^* is a voting equilibrium if (i) and (ii) hold

(i) $\nu^*_i \in \arg\max_{\nu_i \in C \cup \{0\}} \sum_{k \in C} P_k(C, (\nu_i, \nu^*_{-i})) u_{ik}$

(ii) ν^*_i is not a weakly dominated voting strategy.

Note: Ruling out weakly dominated strategies implies sincere voting in two-candidate elections.

A voting equilibrium exists for any nonempty candidate set. With more than 3 candidates there are multiple equilibria in general.
Entry

- Citizen i's (pure) entry strategy is $e_i \in \{0, 1\}$.
- $e = (e_1, \cdots, e_l)$, $C(e) = \{i | e_i = 1\}$.
- Suppose $\nu(C)$ is the commonly anticipated voting strategy when the set of candidates is C.
- Given $\nu(.)$ and e, the expected payoff of i is

$$U_i(e, \nu(.)) = \sum_{j \in C(e)} P_i(C(e), \nu(C(e))) u_{ij} + P_0(C(e)) u_{i0}$$

where $P_0(\emptyset) = 1$ and $P_0(C) = 0$ otherwise.
Existence

We allow for mixed strategy at the entry stage: citizen i chooses to enter with probability γ_i.

Theorem (Besley and Coate, 1997)

There exists a political equilibrium $\{\gamma, \nu(.)\}$

- Typically, there are many equilibria, with one, two or more candidates.
An Example: Public Good Provision

- \(\mathcal{I} = [0, 1] \)
- Income \(y_i \sim F(\cdot) \)
- \(y_m = F^{-1}(1/2) < \bar{y} = \int ydF(y) \)
- Preferences: \(u_i(c_i, g) = c_i + H(g) \) with \(H' > 0, H'' < 0 \)
- Balanced Budget: \(g = \tau \bar{y} \).
- Hence \(U_i(g) = (1 - g/\bar{y}) y_i + H(g) \)
Voters’ ideal policies

• \(g_i^* = H^{-1} \left(\frac{Y_i}{Y} \right) \)

• With Downsian electoral competition the political outcome is \(g_m^* \).

• What happens with citizen candidates?

• If a citizen runs, she cannot commit to apply anything else than \(g_i^* \).

• Let \(\delta \) be the entry cost, and \(\hat{g} \) the status quo policy.
Median Voter

- \(U_i(g) = (1 - g/y) y_i + H(g) \) satisfies SCP (it has ID in \((-y_i, g))\).

- Hence the median voter’s preferences determine the outcome of binary electoral contests.

\[
U_m(g) > U_m(g') \Rightarrow g \succ^{mv} g'
\]

- With more than two competing policies, there is scope for strategic voting...
One-Candidate Equilibria

• If the median voter runs, no one can beat him, so no other candidate would enter.

• The median voter wants to run if

\[U_m(g_m) - \delta > U_m(\hat{g}). \]

• Are there other one-candidate equilibria?
One Candidate Equilibria

\[U_m(.) \]

\[g_m \]
One Candidate Equilibria

$U_m(.)$

$g_m \succ m v g_i$

$g_i \succ g_m$

$\succ m v g_i$
One Candidate Equilibria

No Entry

$U_m(.)$

g_m

g_i

$\succ^m v g_i$
One Candidate Equilibria

\[i \text{ wants to enter } U_m(.) \]

\[g_m < g_i \succ mv g_i \]

\[> \delta \]
Theorem

There exists an interval Y of incomes with $y_m \in Y$ such that for every i with $y_i \in Y$ there exists a one-candidate equilibrium in which i is the candidate, and if $y_i \notin Y$, then there is no one-candidate equilibrium such that i is the candidate.

- In any one-candidate equilibrium, the political outcome is “close to” the median.
Two-Candidate Equilibria

- Suppose ℓ and r are both running.
- Then each of them must stand a chance to win, hence
 \[U_m(g_\ell^*) = U_m(g_r^*) \]
- And each of them must prefer to run
 \[
 \frac{1}{2} \{ U_\ell(g_\ell^*) + U_\ell(g_r^*) \} - \delta \geq U_\ell(g_r^*) \Rightarrow U_\ell(g_\ell^*) - U_\ell(g_r^*) \geq 2\delta
 \]
 \[
 \frac{1}{2} \{ U_r(g_r^*) + U_r(g_\ell^*) \} - \delta \geq U_r(g_\ell^*) \Rightarrow U_r(g_r^*) - U_r(g_\ell^*) \geq 2\delta
 \]
- Hence g_ℓ^* and g_r^* must be sufficiently far. Assume $g_\ell^* < g_r^*$
Two-Candidate Equilibria

• No other citizen should be willing to enter...

• Only citizens C such that $g^*_\ell < g^*_C < g^*_r$ may have an incentive to enter (why?)

• The pivotal voters are i and j such that

$$U_i(g^*_C) = U_i(g^*_\ell),$$

$$U_j(g^*_C) = U_j(g^*_r).$$

• And C gets $F(y_j) - F(y_i)$ votes.
Two-Candidate Equilibria

- C wins if
 \[F(y_j) - F(y_i) > \max\{F(y_i), 1 - F(y_j)\} \]
 (1)

- And C wants to run if
 \[U_C(g_C^*) - \delta > \frac{1}{2} \{U_\ell(g_\ell^*) + U_\ell(g_r^*)\} \]
 (2)

- Both (1) and (2) tend to be satisfied if g_ℓ^* and g_r^* are not too far.
Remarks 1

• In both one and two-candidate equilibria, the outcome is no longer necessarily the preferred policy of the median voter.

• However, the median voter plays an important role in the characterization of these equilibria.

• In the two-candidate equilibria, a “left” and a “right” party emerge.

• In the one-candidate equilibrium, the status quo plays an important role.

• There are also three-candidate equilibria etc...
Remarks 2

- This model does not presume that commitment is possible.
- It is a possible approach towards endogenizing party formation.
- There is a small literature on the formation of political parties.
- However the multiplicity of equilibria can be a problem.
Topics

- Political Parties
- Ambiguity in Elections (strategic or involuntary)
- Applications of the citizen candidate model
- The political economy of taxation.
- Legislative Bargaining
- Lobbying
- Campaign Funding
- Elections with Imperfect Information